38 resultados para Wilson, Dora, 1883-1946

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis fills out Wilson's previously unresearched biography and argues for a reassessment of her standing as an important inter-war artist in Melbourne. The role of cultural gatekeepers in building and deconstructing artistic reputation is discussed, with examples of Wilson's art and an inaugural Catalogue of her known works.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eukaryotic cells prevent copper-induced, free radical damage to cell components by employing copper-binding proteins and transporters that minimize the likelihood of free copper ions existing in the cell. In the cell, copper is actively transported from the cytoplasm during the biosynthesis of secreted coppercontaining proteins and, as a protective measure, when there is an excess of copper. In humans, this is accomplished by two related copper-transporting ATPases (ATP7A and ATP7B), which are the affected genes in two distinct human genetic disorders of copper transport, Menkes disease (copper deficiency) and Wilson disease (copper toxicosis). The study of these ATPases has revealed their molecular mechanisms of copper transport and their roles in physiological copper homeostasis. Both ATP7A and ATP7B are expressed in specific brain regions and neurological abnormalities are important clinical features in Menkes and Wilson disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we investigated the function of the sheep orthologue of ATP7B (sATP7B), the protein affected in the human copper toxicosis disorder Wilson disease. Two forms of sATP7B are found in the sheep, a ‘normal’ form and one with an alternate N terminus, both of which were expressed in CHO-K1 cells. Cells expressing either form of sATP7B were more resistant to copper than the parental CHO-K1 cells. Subcellular localisation studies showed that both forms of sATP7B were similarly located in the trans-Golgi network (TGN). When the extracellular copper concentration was increased, each form of sATP7B redistributed to a punctate, vesicular compartment that extended throughout the cytoplasm. Both forms of sATP7B recycled to the perinuclear location within one hour when the cells were subsequently incubated in basal medium. After treatment of cells with bafilomycin A1 sATP7B accumulated in cytoplasmic vesicles, implying that ATP7B continuously recycles via the endocytic pathway. These results suggest that both forms of sATP7B are functional copper-transport proteins and that the intracellular location and trafficking of the sheep protein within the cell also appears normal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper is an essential element for the activity of a number of physiologically important enzymes. Enzyme-related malfunctions may contribute to severe neurological symptoms and neurological diseases: copper is a component of cytochrome c oxidase, which catalyzes the reduction of oxygen to water, the essential step in cellular respiration. Copper is a cofactor of Cu/Zn-superoxide-dismutase which plays a key role in the cellular response to oxidative stress by scavenging reactive oxygen species. Furthermore, copper is a constituent of dopamine-β-hydroxylase, a critical enzyme in the catecholamine biosynthetic pathway. A detailed exploration of the biological importance and functional properties of proteins associated with neurological symptoms will have an important impact on understanding disease mechanisms and may accelerate development and testing of new therapeutic approaches. Copper binding proteins play important roles in the establishment and maintenance of metal-ion homeostasis, in deficiency disorders with neurological symptoms (Menkes disease, Wilson disease) and in neurodegenerative diseases (Alzheimer’s disease). The Menkes and Wilson proteins have been characterized as copper transporters and the amyloid precursor protein (APP) of Alzheimer’s disease has been proposed to work as a Cu(II) and/or Zn(II) transporter. Experimental, clinical and epidemiological observations in neurodegenerative disorders like Alzheimer’s disease and in the genetically inherited copper-dependent disorders Menkes and Wilson disease are summarized. This could provide a rationale for a link between severely dysregulated metal-ion homeostasis and the selective neuronal pathology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wilson disease is an autosomal recessive copper transport disorder resulting from defective biliary excretion of copper and subsequent hepatic copper accumulation and liver failure if not treated. The disease is caused by mutations in the ATP7B (WND) gene, which is expressed predominantly in the liver and encodes a copper-transporting P-type ATPase that is structurally and functionally similar to the Menkes protein (MNK), which is defective in the X-linked copper transport disorder Menkes disease. The toxic milk (tx) mouse has a clinical phenotype similar to Wilson disease patients and, recently, the tx mutation within the murine WND homologue (Wnd) of this mouse was identified, establishing it as an animal model for Wilson disease. In this study, cDNA constructs encoding the wild-type (Wnd-wt) and mutant (Wnd-tx) Wilson proteins (Wnd) were generated and expressed in Chinese hamster ovary (CHO) cells. The tx mutation disrupted the copper-induced relocalization of Wnd in CHO cells and abrogated Wnd-mediated copper resistance of transfected CHO cells. In addition, co-localization experiments demonstrated that while Wnd and MNK are located in the trans-Golgi network in basal copper conditions, with elevated copper, these proteins are sorted to different destinations within the same cell. Ultrastructural studies showed that with elevated copper levels, Wnd accumulated in large multi-vesicular structures resembling late endosomes that may represent a novel compartment for copper transport. The data presented provide further support for a relationship between copper transport activity and the copper-induced relocalization response of mammalian copper ATPases, and an explanation at a molecular level for the observed phenotype of tx mice

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Wilson disease (WD) protein (ATP7B) is a copper-transporting P-type ATPase that is responsible for the efflux of hepatic copper into the bile, a process that is essential for copper homeostasis in mammals. Compared with other mammals, sheep have a variant copper phenotype and do not efficiently excrete copper via the bile, often resulting in excessive copper accumulation in the liver. To investigate the function of sheep ATP7B and its potential role in the copper-accumulation phenotype, cDNAs encoding the two forms of ovine ATP7B were transfected into immortalised fibroblast cell lines derived from a Menkes disease patient and a normal control. Both forms of ATP7B were able to correct the copper-retention phenotype of the Menkes cell line, demonstrating each to be functional copper-transporting molecules and suggesting that the accumulation of copper in the sheep liver is not due to a defect in the copper transport function of either form of sATP7B.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The aim of this study is to evaluate the consistency of dietary patterns assessed through the use of a dietary recall and a 5-day food diary. Design: Participants (n=2265) of a longitudinal study of health and development completed 48-h dietary recall at interview, followed by a 5-day food diary and with the 24 h immediately preceding the interview analysed separately as a 24-h recall. Mean intakes of foods and nutrients were calculated and dietary patterns were assessed using exploratory factor analysis, using the method of principal components. Paired t-tests and correlation coefficients were used to compare the three dietary assessment methods. Results: Five distinct dietary patterns were identified using the food diary and the 48-h recall but were less consistent on the 24-h recall.  Correlations between factor scores on the 48-h recall and the food diary (r=0.13–0.67) were higher than those between the 24-h recall and food diary (r=-0.01–0.59). The recall methods were effective at ranking subjects according to food and nutrient intakes, with the 48-h recall and food diary showing higher correlations in both males and females. Conclusions: This study indicates that a 48-h recall effectively characterises dietary patterns in British adults when compared to a food diary and ranks participants appropriately with respect to most nutrients and foods and is superior to a single 24-h recall. These results have implications for longitudinal studies where maximising response rates to repeat dietary assessment tools is essential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Use of dietary supplements may be one of a number of health-related behaviors that cluster together. The current study investigated the underlying diet, health-related characteristics, and behaviors of users and nonusers of dietary supplements in a longitudinal study of health. Participants (n = 1776) completed a 5-d food diary including information on dietary supplement use (vitamins, minerals, and nutraceuticals) at age 53 y. Sociodemographic information and data on smoking, alcohol, and physical activity were obtained along with anthropometric measurements, blood pressure, and a blood sample (nonfasting subjects). A significantly greater percentage of women reported supplement use compared with men (45.1 vs. 25.2%). Supplement use was associated with lower BMI, lower waist circumference, higher plasma folate and plasma vitamin B-12 concentrations, nonsmoking, participation in physical activity, and nonmanual social class in women and with plasma folate concentrations and participation in physical activity in men. Nonsupplement users tended to be nonconsumers of breakfast cereals, fruit, fruit juice, yogurt, oily fish, and olive oil and had lower dietary intakes of potassium, magnesium, phosphorus, iron, and vitamin C even after adjustment for sociodemographic and behavioral factors. Overall, supplement users tended to differ from nonsupplement users on a range of health-related behaviors and health status indicators, although there were fewer significant associations in men. Similarly, dietary supplements users tended to have underlying diets that, were healthier and those taking supplements may be the least likely to need them. These results support the notion of a clustering of healthy behaviors and cardiovascular risk factors, particularly for women.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper deficiency during pregnancy results in early embryonic death and foetal structural abnormalities including skeletal, pulmonary and cardiovascular defects. During pregnancy, copper is transported from the maternal circulation to the foetus by mechanisms which have not been clearly elucidated. Two coppertransporting ATPases, Menkes (ATP7A; MNK) and Wilson (ATP7B; WND), are expressed in the placenta and both are involved in placental copper transport, as copper accumulates in the placenta in both Menkes and Wilson disease. The regulatory mechanisms of MNKand WNDand their exact role in the placenta are unknown. Using a differentiated polarized Jeg-3 cell culture model of placental trophoblasts, MNK and WND were shown to be expressed within these cells. Distinct roles forMNKandWND are suggested on the basis of their opposing responses to insulin. Insulin and oestrogen increased both MNK mRNA and protein levels, altered the localization of MNK towards the basolateral membrane in a copper-independent manner, and increased the transport of copper across this membrane. In contrast, levels of WND were decreased in response to insulin, and the protein was located in a tight perinuclear region, with a corresponding decrease in copper efflux across the apical membrane. These results are consistent with a model of copper transport in the placenta in which MNK delivers copper to the foetus and WND returns excess copper to the maternal circulation. Insulin and oestrogen stimulate copper transport to the foetus by increasing the expression of MNK and reducing the expression of WND. These data show for the first time that MNK and WND are differentially regulated by the hormones insulin and oestrogen in human placental cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wilson's disease carriers constitute 1% of the human population. It is unknown whether Wilsons disease carriers are at increased susceptibility to copper overload when exposed to chronically high levels of ingested copper. This study investigated the effect of chronic excess copper in drinking water on the heterozygous form of the Wilson’s disease mouse model – the toxic milk (tx) mouse. Mice were provided with drinking water containing 300 mg/l copper for 4–7, 8–11, 12–15 or 16–20 months. At the completion of the study liver, spleen, kidney and brain tissue were analyzed by atomic absorption spectroscopy to determine copper concentration. Plasma ceruloplasmin oxidase activity and liver histology were also assessed. Chronic copper loading resulted in significantly increased liver copper in both tx heterozygous and tx homozygous mice, while wild type mice were resistant to the effects of copper loading. Copper loading effects were greatest in tx homozygous mice, with increased extrahepatic copper deposition in spleen and kidney – an effect absent in heterozygote and wild type mice. Although liver histology in homozygous mice was markedly abnormal, no histological differences were noted between heterozygous and wild type mice with copper loading. Tx heterozygous mice have a reduced ability to excrete excess copper, indicating that half of the normal liver Atp7b copper transporter activity is insufficient to deal with large copper intakes. Our results suggest that Wilsons disease carriers in the human population may be at increased risk of copper loading if chronically exposed to elevated copper in food or drinking water.