4 resultados para Wear particles

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current work compares some slurry pump lab wear results with the wear found across different field applications with d85 particle size ranging from 100 to 4000mm. Side-liner wear life data has been collected for two different impeller geometries and two different material classes (cast iron and natural rubber). Different field wear patterns have been photographed and categorised on the basis of particle size. The field wear patterns showed close similarity to the lab wear patterns particularly in the areas of localised gouging. Wear rates are also compared for the different geometries. Overall trend of wear with particle size for the white iron parts was similar to the grey iron lab tests albeit at significantly lower wear rates. In general, the wear with the rubber side-liner was less at smaller particle sizes but greater for particles larger than d8The current work compares some slurry pump lab wear results with the wear found across different field applications with d85 particle 10 size ranging from 100 to 4000mm. Side-liner wear life data has been collected for two different impeller geometries and two different 11 material classes (cast iron and natural rubber). Different field wear patterns have been photographed and categorised on the basis of particle 12 size. The field wear patterns showed close similarity to the lab wear patterns particularly in the areas of localised gouging. Wear rates are 13 also compared for the different geometries. Overall trend of wear with particle size for the white iron parts was similar to the grey iron lab 14 tests albeit at significantly lower wear rates. In general, the wear with the rubber side-liner was less at smaller particle sizes but greater for 15 particles larger than d85 of about 700mm. © 2001 Elsevier Science B.Y. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fe3Al–Al2O3 double-layer coatings (DC), Fe3Al-Fe3Al/50%Al2O3–Al2O3 triple-layer coatings (TC) and Fe3Al-Al2O3 graded coatings (GC) were produced from a series of Fe3Al/Al2O3 composite powders with different compositions on low carbon steel substrate using PLAXAIR plasma spraying equipment. Friction behaviors and wear resistance of the three kinds of coatings have been investigated under different loads. Tests were carried out using an MRH-3 standard machine, in lineal contact sliding under dry condition against hardmetal, at a sliding velocity of about 1.57 ms−1. Wear rates under different loads were measured and the friction coefficients were recorded. SEM analysis was carried out to identify the wear mechanisms. The results show that the GC has higher wear-resistance than DC and TC. The tribological characteristics of graded coating were different along the depth of the coatings, and the surface of coatings with pure Al2O3 does not show the best wear resistance. The wear rate and friction coefficients were also different under different loads. The failure types of plasma-sprayed Fe3Al-Al2O3 graded coatings in lineal contact were: loosening of ceramic particles, crack nucleation and propagation, brittle fracture, plastic deformation, and adhesive wear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The specific wear rate and friction coefficient of a pearlitic microstructure subjected to different abrasive environments (i.e. SiC and alumina) were examined. A CSM high temperature pin-on-disc tribometer was used to simulate the two-body abrasive condition (i.e. the metallic surface abrading against the abrasive particles). The characteristics of the abrasive particles (i.e. particle size and density) revealed a significant impact on the amount of material loss. The specific wear rate of the pearlitic microstructure decreased with a reduction in the abrasive particle size, irrespective of the particle type. In addition, distinct particle deterioration mechanisms were observed during the abrasion process, which was largely determined by the abrasive particle size. Attrition, shelling and fracture were some of the dominant particle deterioration mechanisms occurring in both of the abrasive environments. SEM and EDX analysis on the wear debris displayed a unique metallic chip formation with respect to the particle type. Furthermore, the abrading efficiency (i.e. threshold level) of the abrasive particles was identified by means of interrupted abrasive wear tests. The dense packing nature of the alumina abrasive particles resulted in a significantly higher material removal rate than the SiC abrasive environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The abrasive wear resistance of four distinct metallurgical steel microstructures - bainite, pearlite, martensite and tempered martensite, with similar hardness levels was investigated. A pin-on-disc tribometer was used to simulate the two-body abrasive condition (i.e. the metallic surface abrading against the silicon carbide abrasive particles) and evaluate the specific wear rate of the microstructures. Each microstructure had a unique response towards the abrasion behaviour and this was largely evident in the friction curve. However, the multi-phase microstructures (i.e. bainite and pearlite) demonstrated better abrasion resistance than the single-phase microstructures (i.e. martensite and tempered martensite). Abrasion induced microstructural changes at the deformed surfaces were studied using sub-surface and topographical techniques. The properties of these layers (i.e. surface profile measurements) determined the amount of material loss for each microstructure. These were directly linked to the single-wear track analysis that highlighted a marked difference in their mode of material removal. Ploughing and wedge formation modes were dominant in the case of bainite and pearlite microstructures, whereas the cutting mode could be attributed to the higher material loss in the single-phase microstructures. The combination of brittle and ductile phases in the multi-phase microstructure matrix could be one of the driving factors for their superior abrasion resistance.