3 resultados para Water balances

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Many environmental studies require accurate simulation of water and solute fluxes in the unsaturated zone. This paper evaluates one- and multi-dimensional approaches for soil water flow as well as different spreading mechanisms to model solute behavior at different scales. For quantification of soil water fluxes,Richards equation has become the standard. Although current numerical codes show perfect water balances, the calculated soil water fluxes in case of head boundary conditions may depend largely on the method used for spatial averaging of the hydraulic conductivity. Atmospheric boundary conditions, especially in the case of phreatic groundwater levels fluctuating above and below a soil surface, require sophisticated solutions to ensure convergence. Concepts for flow in soils with macro pores and unstable wetting fronts are still in development. One-dimensional flow models are formulated to work with lumped parameters in order to account for the soil heterogeneity and preferential flow. They can be used at temporal and spatial scales that are of interest to water managers and policymakers. Multi-dimensional flow models are hampered by data and computation requirements.Their main strength is detailed analysis of typical multi-dimensional flow problems, including soil heterogeneity and preferential flow. Three physically based solute-transport concepts have been proposed to describe solute spreading during unsaturated flow: The stochastic-convective model (SCM), the convection-dispersion equation (CDE), and the fraction aladvection-dispersion equation (FADE). A less physical concept is the continuous-time random-walk process (CTRW). Of these, the SCM and the CDE are well established, and their strengths and weaknesses are identified. The FADE and the CTRW are more recent,and only a tentative strength weakness opportunity threat (SWOT)analysis can be presented at this time. We discuss the effect of the number of dimensions in a numerical model and the spacing between model nodes on solute spreading and the values of the solute-spreading parameters. In order to meet the increasing complexity of environmental problems, two approaches of model combination are used: Model integration and model coupling. Amain drawback of model integration is the complexity of there sulting code. Model coupling requires a systematic physical domain and model communication analysis. The setup and maintenance of a hydrologic framework for model coupling requires substantial resources, but on the other hand, contributions can be made by many research groups.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sharply reduced catchment inflows across Australia around the end of the twentieth century led to a sequence of water restrictions followed, as the drought persisted, by approximately $10 billion of investments in desalination plants near Perth, Adelaide, Melbourne, Sydney and Brisbane. This Deakin University project jointly with Griffith University, for the National Centre of Excellence in Desalination (NCEDA), follows these new investments. We ask how best to manage bulk water supply and retail supply given the facts and fears of uncertain rainfall, modelled over a 100 year simulation period. We use Monte Carlo style studies aiming to capture the new tensions and trade-offs regarding uncertain climate, rainfall and water supply. There are presently no comprehensive life-cycle approaches to model city water balances that incorporate economic feedbacks, such as tariff adjustment, which can in turn create a financing capacity for such investment responses to low catchment levels, models that could provide significant policy implications for water planners. This project addresses the gap, and presents excerpts from a system dynamics model that augments the usual water utility representation of the physical linkages and water grids. We add inter-connected feedback loops in tariff structures, demand levels and financing capacity. Tariffs are reset in association with drought and the modelling of responses both in terms of reduced consumption and increased revenue to the utility, depending on the elasticities of demand responses to higher tariffs, both short and long term, while also allowing effects from any transitional restrictions. Before reporting on parts of the simulations applied to Melbourne, this paper will first review the general issues surrounding whether desalination is or can be a “game changer” for economic development that hinges on secure water supply. We then explore options in bulk water supply management when desalination augments the choices, including catchments, dams, recycling, pipelines from rivers and savings in irrigation. Finally, the paper addresses the intriguing and important question of the value and cost of providing water for environmental uses.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Water supply and demand planning is often conducted independently of social and economic strategies. There are presently no comprehensive life-cycle approaches to modelling urban water balances that incorporate economic feedbacks, such as tariff adjustment, which can in turn create a financing capacity for investment responses to low reservoir levels. This paper addresses this gap, and presents a system dynamics model that augments the usual water utility representation of the physical linkages of water grids, by adding inter-connected feedback loops in tariff structures, demand levels and financing capacity. The model, applied in the south-east Queensland region in Australia, enables simulation of alternatives and analysis of stocks and flows around a grid or portfolio of bulk supplies including an increasing proportion of rain-independent desalination plants. Such rain-independent water production plants complement the rain-dependent sources in the region and can potentially offer indefinite water security at a price. The study also shows how an alternative temporary drought pricing regime not only defers costly bulk supply infrastructure but actually generates greater price stability than traditional pricing approaches. The model has implications for water supply planners seeking to pro-actively plan, justify and finance portfolios of rain-dependent and rain-independent bulk water supply infrastructure. Interestingly, the modelling showed that a temporary drought pricing regime not only lowers the frequency and severity of water insecurity events but also reduces the long-run marginal cost of water supply for the region when compared to traditional reactive planning approaches that focus on restrictions to affect demand in scarcity periods.