4 resultados para WUI

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

IT organisations are continually seeking improvements in managing IT service management processes. The selection of relevant processes to improve is one of the most crucial initial decisions to make in service improvement projects. In this paper, we focus on developing a process selection decision model using service perception factors from the Service Quality (SERV-QUAL) model and business drivers from the Balanced Scorecard perspectives along with the main objective of service improvement as improvement driver. We use a Design Science Research method to develop the model and then a prototype from our proposed model. We establish an evaluation protocol to determine the effectiveness of the prototype which will be demonstrated in a case organisation. The main contribution of the paper is to provide evidence-based decision support for IT service providers to select the most relevant service processes to improve.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An improved evolving model, i.e., Evolving Tree (ETree) with Fuzzy c-Means (FCM), is proposed for undertaking text document visualization problems in this study. ETree forms a hierarchical tree structure in which nodes (i.e., trunks) are allowed to grow and split into child nodes (i.e., leaves), and each node represents a cluster of documents. However, ETree adopts a relatively simple approach to split its nodes. Thus, FCM is adopted as an alternative to perform node splitting in ETree. An experimental study using articles from a flagship conference of Universiti Malaysia Sarawak (UNIMAS), i.e., Engineering Conference (ENCON), is conducted. The experimental results are analyzed and discussed, and the outcome shows that the proposed ETree-FCM model is effective for undertaking text document clustering and visualization problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the popularity of Failure Mode and Effect Analysis (FMEA) in a wide range of industries, two well-known shortcomings are the complexity of the FMEA worksheet and its intricacy of use. To the best of our knowledge, the use of computation techniques for solving the aforementioned shortcomings is limited. As such, the idea of clustering and visualization pertaining to the failure modes in FMEA is proposed in this paper. A neural network visualization model with an incremental learning feature, i.e., the evolving tree (ETree), is adopted to allow the failure modes in FMEA to be clustered and visualized as a tree structure. In addition, the ideas of risk interval and risk ordering for different groups of failure modes are proposed to allow the failure modes to be ordered, analyzed, and evaluated in groups. The main advantages of the proposed method lie in its ability to transform failure modes in a complex FMEA worksheet to a tree structure for better visualization, while maintaining the risk evaluation and ordering features. It can be applied to the conventional FMEA methodology without requiring additional information or data. A real world case study in the edible bird nest industry in Sarawak (Borneo Island) is used to evaluate the usefulness of the proposed method. The experiments show that the failure modes in FMEA can be effectively visualized through the tree structure. A discussion with FMEA users engaged in the case study indicates that such visualization is helpful in comprehending and analyzing the respective failure modes, as compared with those in an FMEA table. The resulting tree structure, together with risk interval and risk ordering, provides a quick and easily understandable framework to elucidate important information from complex FMEA forms; therefore facilitating the decision-making tasks by FMEA users. The significance of this study is twofold, viz., the use of a computational visualization approach to tackling two well-known shortcomings of FMEA; and the use of ETree as an effective neural network learning paradigm to facilitate FMEA implementations. These findings aim to spearhead the potential adoption of FMEA as a useful and usable risk evaluation and management tool by the wider community.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Management strategies to reduce the risks to human life and property from wildfire commonly involve burning native vegetation. However, planned burning can conflict with other societal objectives such as human health and biodiversity conservation. These conflicts are likely to intensify as fire regimes change under future climates and as growing human populations encroach farther into fire-prone ecosystems. Decisions about managing fire risks are therefore complex and warrant more sophisticated approaches than are typically used. We applied a multicriteria decision making approach (MCDA) with the potential to improve fire management outcomes to the case of a highly populated, biodiverse, and flammable wildland-urban interface. We considered the effects of 22 planned burning options on 8 objectives: house protection, maximizing water quality, minimizing carbon emissions and impacts on human health, and minimizing declines of 5 distinct species types. The MCDA identified a small number of management options (burning forest adjacent to houses) that performed well for most objectives, but not for one species type (arboreal mammal) or for water quality. Although MCDA made the conflict between objectives explicit, resolution of the problem depended on the weighting assigned to each objective. Additive weighting of criteria traded off the arboreal mammal and water quality objectives for other objectives. Multiplicative weighting identified scenarios that avoided poor outcomes for any objective, which is important for avoiding potentially irreversible biodiversity losses. To distinguish reliably among management options, future work should focus on reducing uncertainty in outcomes across a range of objectives. Considering management actions that have more predictable outcomes than landscape fuel management will be important. We found that, where data were adequate, an MCDA can support decision making in the complex and often conflicted area of fire management.