80 resultados para WBAN Bluetooth Wearable Sensors Cupid RTOS RTX RL-ARM cortex-m4 WSN parkinson

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Qualitative assessment of the progress in physical rehabilitation largely depends on accurate measurement of the range of movements and other kinematic parameters. In clinical practice, wearable inertial sensors have proved to be a potential candidate for such measurements, over the traditional marker based optical systems due to cost and space considerations. The accuracy of wearable sensors have a significant dependence on the initial orientation calibration and the assumption that the sensor will not slip or move with respect to the attached limb. This article introduces a novel calibration algorithm to correct initial orientation misalignment, as well as to track and correct subsequent alignment errors progressively throughout the experiment. The theoretical assertions are validated through controlled experiments with simulated accelerometer and gyroscope measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Long-term, off-site human monitoring systems are emerging with respect to the skyrocketing expenditures engaged with rehabilitation therapies for neurological diseases. Inertial/magnetic sensor modules are well known as a worthy solution for this problem. Much attention and effort are being paid for minimizing drift problem of angular rates, yet the rest of kinematic measurements (earth’s magnetic field and gravitational orientation) are only themselves capable enough to track movements applying the theory for solving historicalWahbas Problem. Further, these solutions give a closed form solution which makes it mostly suitable for real time Mo-Cap systems. This paper examines the feasibility of some typical solutions of Wahba’s Problem named TRIAD method, Davenport’s q method, Singular Value Decomposition method and QUEST algorithm upon current inertial/magnetic sensor measurements for tracking human arm movements. Further, the theoretical assertions are compared through controlled experiments with both simulated and actual accelerometer and magnetometer measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiac complications of diabetes require continuous monitoring since they may lead to increased morbidity or sudden death of patients. In order to monitor clinical complications of diabetes using wearable sensors, a small set of features have to be identified and effective algorithms for their processing need to be investigated. This article focuses on detecting and monitoring cardiac autonomic neuropathy (CAN) in diabetes patients. The authors investigate and compare the effectiveness of classifiers based on the following decision trees: ADTree, J48, NBTree, RandomTree, REPTree, and SimpleCart. The authors perform a thorough study comparing these decision trees as well as several decision tree ensembles created by applying the following ensemble methods: AdaBoost, Bagging, Dagging, Decorate, Grading, MultiBoost, Stacking, and two multi-level combinations of AdaBoost and MultiBoost with Bagging for the processing of data from diabetes patients for pervasive health monitoring of CAN. This paper concentrates on the particular task of applying decision tree ensembles for the detection and monitoring of cardiac autonomic neuropathy using these features. Experimental outcomes presented here show that the authors' application of the decision tree ensembles for the detection and monitoring of CAN in diabetes patients achieved better performance parameters compared with the results obtained previously in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The rapid expansion of mobile-based systems, the capabilities of smartphone devices, as well as the radio access and cellular network technologies are the wind beneath the wing of mobile health (mHealth). In this paper, the concept of biomedical sensing analyzer (BSA) is presented, which is a novel framework, devised for sensor-based mHealth applications. The BSA is capable of formulating the Quality of Service (QoS) measurements in an end-to-end sense, covering the entire communication path (wearable sensors, link-technology, smartphone, cell-towers, mobile-cloud, and the end-users). The characterization and formulation of BSA depend on a number of factors, including the deployment of application-specific biomedical sensors, generic link-technologies, collection, aggregation, and prioritization of mHealth data, cellular network based on the Long-Term Evolution (LTE) access technology, and extensive multidimensional delay analyses. The results are studied and analyzed in a LabView 8.5 programming environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Advances in information and communications technology has led to a significant advances in noncontact portable devices capable of monitoring vital signals of patients. These wearable and implantable bio-monitoring systems allow collections of wearable sensors to be constructed as a Body Area Network (BAN) to record biological data for a subject. Such systems can be used to improve the quality of life and treatment outcomes for patients. One of the main uses for a bio-monitoring system is to record biological data values from a subject and provide them to a doctor or other medical professional. However, wearable bio-monitoring systems raise unique security considerations. In this paper, we discuss some of the security considerations that have arisen in our work around communications agnostic bio-monitoring, and how we have addressed these concerns. Furthermore, the issues related to the identifying and trusting sender and receiver entities are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many cases, sensors are randomly deployed in Wireless Sensor Networks (WSN), called Sensor-Randomly-Deployed WSN (SRD WSN). Several cluster-based routing protocols are provided to maximize network lifetime of SRD WSN in different sensor densities. LEACH performs better than direct routing in the density of 0.01. BCDCP excels LEACH in the density of 0.05. DMSTRP outperforms LEACH and BCDCP in the density of. However, simulation results under one or two kinds of sensor densities are not strong enough to prove the optimum of the routing protocols. In this paper, we give the general formulas to compute the network lifetimes of the above three routing protocols, discuss their optimal number of clusters, and compare their optimal network lifetime in arbitrary sensor densities. These formulas can provide more general design guidelines applicable to SRD WSN than simulation results under only one or two kinds of sensor densities. © 2007 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Smartphone technology has become more popular and innovative over the last few years, and technology companies are now introducing wearable devices into the market. By emerging and converging with technologies such as Cloud, Internet of Things (IoT) and Virtualization, requirements to personal sensor devices are immense and essential to support existing networks, e.g. mobile health (mHealth) as well as IoT users. Traditional physiological and biological medical sensors in mHealth provide health data either periodically or on-demand. Both of these situations can cause rapid battery consumption, consume significant bandwidth, and raise privacy issues, because these sensors do not consider or understand sensor status when converged together. The aim of this research is to provide a novel approach and solution to managing and controlling personal sensors that can be used in various areas such as the health, military, aged care, IoT and sport. This paper presents an inference system to transfer health data collected by personal sensors efficiently and effectively to other networks in a secure and effective manner without burdening workload on sensor devices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stroke is a common neurological condition which is becoming increasingly common as the population ages. This entails healthcare monitoring systems suitable for home use, with remote access for medical professionals and emergency responders. The mobile phone is becoming the easy access tool for self-evaluation of health, but it is hindered by inherent problems including computational power and storage capacity. This research proposes a novel cloud based architecture of a biomedical system for a wearable motion kinematic analysis system which mitigates the above mentioned deficiencies of mobile devices. The system contains three subsystems: 1. Bio Kin WMS for measuring the acceleration and rotation of movement 2. Bio Kin Mobi for Mobile phone based data gathering and visualization 3. Bio Kin Cloud for data intensive computations and storage. The system is implemented as a web system and an android based mobile application. The web system communicates with the mobile application using an encrypted data structure containing sensor data and identifiable headings. The raw data, according to identifiable headings, is stored in the Amazon Relational Database Service which is automatically backed up daily. The system was deployed and tested in Amazon Web Services.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The successful commercialization of smart wearable garments is hindered by the lack of fully integrated carbon-based energy storage devices into smart wearables. Since electrodes are the active components that determine the performance of energy storage systems, it is important to rationally design and engineer hierarchical architectures atboth the nano- and macroscale that can enjoy all of the necessary requirements for a perfect electrode. Here we demonstrate a large-scale flexible fabrication of highly porous high-performance multifunctional graphene oxide (GO) and rGO fibers and yarns by taking advantage of the intrinsic soft self-assembly behavior of ultralarge graphene oxide liquid crystalline dispersions. The produced yarns, which are the only practical form of these architectures for real-life device applications, were found to be mechanically robust (Young's modulus in excess of 29 GPa) and exhibited high native electrical conductivity (2508 ± 632 S m(-1)) and exceptionally high specific surface area (2605 m(2) g(-1) before reduction and 2210 m(2) g(-1) after reduction). Furthermore, the highly porous nature of these architectures enabled us to translate the superior electrochemical properties of individual graphene sheets into practical everyday use devices with complex geometrical architectures. The as-prepared final architectures exhibited an open network structure with a continuous ion transport network, resulting in unrivaled charge storage capacity (409 F g(-1) at 1 A g(-1)) and rate capability (56 F g(-1) at 100 A g(-1)) while maintaining their strong flexible nature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The popularity of smartphones has led to an increasing demand for health apps. As a result, the healthcare industry is embracing mobile technology and the security of mHealth is essential in protecting patient’s user data and WBAN in a clinical setting. Breaches of security can potentially be life-threatening as someone with malicious intentions could misuse mHealth devices and user information. In this article, threats to security for mHealth networks are discussed in a layered approach addressing gaps in this emerging field of research. Suite B and Suite E, which are utilized in many security systems, including in mHealth applications, are also discussed. In this paper, the support for mHealth security will follow two approaches; protecting patient-centric systems and associated link technologies. Therefore this article is focused on the security provisioning of the communication path between the patient terminal (PT; e.g., sensors) and the monitoring devices (e.g., smartphone, data-collector).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper discusses design and fabrication processes in the development of a wearable and flexible conductive resistive sensor. The design and development of the sensor involve the use of Sn-Ag-Cu (SAC)plated Nylon fabric, precisionfused deposition modeling(FDM) using silicone and petrolatum for etch-resistant masks using the EnvisionTEC GmbH Bioplotter, and wet etching using Chromium, Ammonium Persulphate, and Salt-Vinegar etching solutions. Preliminary testing with other mask types, development processes, and sensor design approaches for various applications are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Preliminary research has suggested that wearable cameras may reduce under-reporting of energy intake (EI) in self-reported dietary assessment. The aim of the present study was to test the validity of a wearable camera-assisted 24 h dietary recall against the doubly labelled water (DLW) technique. Total energy expenditure (TEE) was assessed over 15 d using the DLW protocol among forty adults (n 20 males, age 35 (sd 17) years, BMI 27 (sd 4) kg/m2 and n 20 females, age 28 (sd 7) years, BMI 22 (sd 2) kg/m2). EI was assessed using three multiple-pass 24 h dietary recalls (MP24) on days 2-4, 8-10 and 13-15. On the days before each nutrition assessment, participants wore an automated wearable camera (SenseCam (SC)) in free-living conditions. The wearable camera images were viewed by the participants following the completion of the dietary recall, and their changes in self-reported intakes were recorded (MP24+SC). TEE and EI assessed by the MP24 and MP24+SC methods were compared. Among men, the MP24 and MP24+SC measures underestimated TEE by 17 and 9%, respectively (P< 0.001 and P= 0.02). Among women, these measures underestimated TEE by 13 and 7%, respectively (P< 0.001 and P= 0.004). The assistance of the wearable camera (MP24+SC) reduced the magnitude of under-reporting by 8% for men and 6% for women compared with the MP24 alone (P< 0.001 and P< 0.001). The increase in EI was predominantly from the addition of 265 unreported foods (often snacks) as revealed by the participants during the image review. Wearable cameras enhance the accuracy of self-report by providing passive and objective information regarding dietary intake. High-definition image sensors and increased imaging frequency may improve the accuracy further.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strain sensors with high elastic limit and high sensitivity are required to meet the rising demand for wearable electronics. Here, we present the fabrication of highly sensitive strain sensors based on nanocomposites consisting of graphene aerogel (GA) and polydimethylsiloxane (PDMS), with the primary focus being to tune the sensitivity of the sensors by tailoring the cellular microstructure through controlling the manufacturing processes. The resultant nanocomposite sensors exhibit a high sensitivity with a gauge factor of up to approximately 61.3. Of significant importance is that the sensitivity of the strain sensors can be readily altered by changing the concentration of the precursor (i.e., an aqueous dispersion of graphene oxide) and the freezing temperature used to process the GA. The results reveal that these two parameters control the cell size and cell-wall thickness of the resultant GA, which may be correlated to the observed variations in the sensitivities of the strain sensors. The higher is the concentration of graphene oxide, then the lower is the sensitivity of the resultant nanocomposite strain sensor. Upon increasing the freezing temperature from −196 to −20 °C, the sensitivity increases and reaches a maximum value of 61.3 at −50 °C and then decreases with a further increase in freezing temperature to −20 °C. Furthermore, the strain sensors offer excellent durability and stability, with their piezoresistivities remaining virtually unchanged even after 10 000 cycles of high-strain loading−unloading. These novel findings pave the way to custom design strain sensors with a desirable piezoresistive behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Current physiological sensors are passive and transmit sensed data to Monitoring centre (MC) through wireless body area network (WBAN) without processing data intelligently. We propose a solution to discern data requestors for prioritising and inferring data to reduce transactions and conserve battery power, which is important requirements of mobile health (mHealth). However, there is a problem for alarm determination without knowing the activity of the user. For example, 170 beats per minute of heart rate can be normal during exercising, however an alarm should be raised if this figure has been sensed during sleep. To solve this problem, we suggest utilising the existing activity recognition (AR) applications. Most of health related wearable devices include accelerometers along with physiological sensors. This paper presents a novel approach and solution to utilise physiological data with AR so that they can provide not only improved and efficient services such as alarm determination but also provide richer health information which may provide content for new markets as well as additional application services such as converged mobile health with aged care services. This has been verified by experimented tests using vital signs such as heart pulse rate, respiration rate and body temperature with a demonstrated outcome of AR accelerometer sensors integrated with an Android app.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The new charge neutral 4-amino-1,8-naphthalimide based anion sensors 2 and 3 bind to both acetate and dihydrogenphosphate with 1:1 stoichiometry through hydrogen bonding to both thiourea N–H atoms and in the case of dihydrogenphosphate, the naphthalimide 4 amino N–H group as well. This was clearly established from 1H NMR titration experiments with H2PO4- in DMSO-d6 where a substantial shift in the resonance for the naphthalimide N–H was observed concomitant with the expected migration of the thiourea N–H chemical shifts. The binding constants determined from the titration studies indicate that the new sensors bind H2PO4- more strongly than AcO. Fluorescence titrations with sensor 3 indicate quenching of 59% and 36% upon addition of acetate and dihydrogenphosphate, respectively.