74 resultados para WAVELET TRANSFORM

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of methods for automated objective ratings of fabric pilling based on image analysis are described in the literature. The periodic structure of fabrics makes them suitable candidates for frequency domain analysis. We propose a new method of frequency domain analysis based on the two-dimensional discrete wavelet transform to objectively measure pilling intensity in sample images. We present a preliminary evaluation of the proposed method based on analysis of two series of standard pilling evaluation test images. The initial results suggest that the proposed method is feasible, and that the ability of the method to discriminate between levels of pilling intensity depends on the wavelet analysis scale being closely matched to the fabric interyarn pitch. We also present a heuristic method for optimal selection of an analysis wavelet and associated analysis scale.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previously, we proposed a new method of frequency domain analysis based on the two-dimensional discrete wavelet transform to objectively measure pilling intensity in sample fabric images. We have further evaluated this method, and our results indicate that it is robust to small horizontal and/or vertical translations and to significant variations in the brightness of the image under analysis, and is sensitive to rotation and to dilation of the image. These results suggest that as long as precautions are taken to ensure fabric test samples are imaged under consistent conditions of weave/knit pattern alignment (rotation) and apparent interyarn pitch (dilation), the method will yield repeatable results.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A multi-resolution image matching technique based on multiwavelets followed by a coarse to fine strategy is presented. The technique addresses the estimation of optimal corresponding points and the corresponding disparity maps in the presence of occlusion, ambiguity and illuminative variations in the two perspective views taken by two different cameras or at different lighting conditions. The problem of occlusion and ambiguity is addressed by a geometric topological refining approach along with the uniqueness constraint whereas the illuminative variation is dealt by using windowed normalized correlation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A multi-resolution image matching technique based on translation invariant discrete multi-wavelet transform followed by a coarse to fine matching strategy is presented. The technique addresses the estimation of optimal corresponding points and the corresponding disparity maps in the presence of occlusion, ambiguity and illuminative variations in the two perspective views taken by two different cameras or at different lighting conditions. The problem of occlusion and ambiguity is addressed explicitly by a geometric optimization approach along with the uniqueness constraint whereas the illuminative variation is dealt with by using windowed normalized correlation on the discrete multi-wavelet coefficients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fabric pilling is a serious problem for the apparel industry, causing an unsightly appearance and premature wear. Woolen products are particularly prone to pilling. Recently, a process for production of woolen nonwoven apparel fabrics has been commercialized in Australia, and may lead to new markets for Australian wool. However, the success of such nonwoven fabrics will partly rely on their propensity to pill. A key element in the control of fabric pilling is the evaluation of resistance to pilling by testing. Resistance to pilling is normally tested in the laboratory by processes that simulate accelerated wear, followed by a manual assessment of the degree of pilling by an expert based on a visual comparison of the sample to a set of test images. To bring more objectivity into the pilling rating process, a number of automated systems based on image analysis have been developed. The authors previously proposed a new method of image analysis based on the two-dimensional discrete wavelet transform to objectively measure the pilling intensity for woven fabrics. This paper presents preliminary work in extending this method to nonwoven fabrics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Random fluctuations of the electrical quantities (electrode potential and cell current) in electrochemical systems commonly are referred to as electrochemical noise (ECN). The ECN signal for the corrosion of mild steel in reinforced concrete specimen was analyzed with the Continuous Wavelet Transform (CWT). The original signal was transformed into a time-frequency phase plane with colors representing the coefficients of the CWT. The signal shows a self-similarity structure in the phase plane. Through this way, the chaotic nature of corrosion process is manifested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the Fuzzy ARTMAP (FAM) neural network is used to classify metal detector signals into different categories for automated target discrimination. Feature extraction of the metal detector signals is conducted using a wavelet transform technique. The FAM neural network is then employed to classify the extracted features into different target groups. A series of experiments using individual FAM networks and a voting FAM network is conducted. Promising classification accuracy rates are obtained from using individual and voting FAM networks, respectively. The experimental outcomes positively demonstrate the effectiveness of the generated features, and of the FAM network in classifying metal detector signals for automated target discrimination tasks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an investigation on the wave propagation in timber poles with Wavelet Transform (WT) analysis for identification of the condition and underground depth of embedded timber poles in service. Most of non-destructive testing (NDT) applications for timber poles using wave-based methods consider only single wave mode and no dispersion. However, for wave propagations in timber poles (damaged/undamaged), such simplification may not be correct, especially for broad band excitation using impulse impact. To investigate the problem, a 5m timber pole was investigated numerically and experimentally. A dispersion curve is generated from the numerical results to provide guidance on the velocity and wave mode selection. Continuous wavelet transform (CWT) is applied on the same signal to verify the presence of modes and to process data from experimental testing. The results are presented in both time domain and time-frequency domain for comparison. The results of the investigation showed that, wavelet transform analysis can be a reliable signal processing tool for NDT in terms of condition and embedment length determination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an application of Wavelet Transfonn (WT) for determination of stress wave velocity for Non-destructive Testing of timber utility poles in service. For surface Non-destructive Testing (NDT), the hammer impact, which produces generally broadband frequency excitation, is used to generate stress wave. Moreover, due to practicality the impact location for field testing of a utility pole is on the side of the pole and 1.5 m above ground level. And the geometry of utility pole could not guarantee non-dispersive longitudinal wave. All of these issues have resulted in lack of accuracy and reliability of results from surface NDT in field testing. In recognition of such problem, this research explores methods to reliably calculate desired wave velocity by isolating wave mode and studying dispersive nature of utility pole. Fast Fourier Transfonn (FFT) is firstly conducted to determine the suitable frequency from a stress wave data. Then WT is applied on the wave data mentioned to perfonn time-frequency analysis. Velocity can be detennined by time history data of desired frequency from WT results which will be compared with the available analytical solution for longitudinal wave velocity. The results of the investigation showed that wavelet transfonn analysis can be a reliable signal processing tool for non-destructive testing in tenns of velocity detennination, which in tum also helps to detennine the embedded length of the timber pole.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A vision based approach for calculating accurate 3D models of the objects is presented. Generally industrial visual inspection systems capable of accurate 3D depth estimation rely on extra hardware tools like laser scanners or light pattern projectors. These tools improve the accuracy of depth estimation but also make the vision system costly and cumbersome. In the proposed algorithm, depth and dimensional accuracy of the produced 3D depth model depends on the existing reference model instead of the information from extra hardware tools. The proposed algorithm is a simple and cost effective software based approach to achieve accurate 3D depth estimation with minimal hardware involvement. The matching process uses the well-known coarse to fine strategy, involving the calculation of matching points at the coarsest level with consequent refinement up to the finest level. Vector coefficients of the wavelet transform-modulus are used as matching features, where wavelet transform-modulus maxima defines the shift invariant high-level features with phase pointing to the normal of the feature surface. The technique addresses the estimation of optimal corresponding points and the corresponding 2D disparity maps leading to the creation of accurate depth perception model.


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new objective fabric pilling grading method based on wavelet texture analysis was developed. The new method created a complex texture feature vector based on the wavelet detail coefficients from all decomposition levels and horizontal, vertical and diagonal orientations, permitting a much richer and more complete representation of pilling texture in the image to be used as a basis for classification. Standard multi-factor classification techniques of principal components analysis and discriminant analysis were then used to classify the pilling samples into five pilling degrees. The preliminary investigation of the method was performed using standard pilling image sets of knitted, woven and non-woven fabrics. The results showed that this method could successfully evaluate the pilling intensity of knitted, woven and non-woven fabrics by selecting the suitable wavelet and associated analysis scale.