6 resultados para Visible spectroscopy

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The complexes [Hpy][Cu(H3L)(H2O)] 1 (L6 = nitrilotrimethylenetrisphosphonate) and [Cu(HL°)(py)]2·2Me2CO 2 [(L°)3 = P,P,P" -triphenylnitrilotrismethylenetrisphosphinate)] have been isolated and characterized by X-ray crystallography, near IR-visible spectroscopy and magnetic measurements. The structure determination has shown the complexes to be constituted by monomeric and dimeric units respectively. In the monomer the metal atom is surrounded by the phosphonate ligand and a water molecule, with a geometry between a trigonal bipyramid and a square pyramid. The two copper atoms in the dimer are held together by an arm of the tripod ligand, with a pyridine molecule as additional ligand, and display octahedral geometry. The presence of monomeric and dimeric species in aqueous solutions of 1 and 2 has been shown by ESMS studies. The formation in water solution of the dimer [{Cu(H3L)}2]2-, as a minor species, has been supported by potentiometric measurements, whereas only the monomeric anion [CuL°] has been ascertained to be present. In general the ligand H3L° forms less stable copper(II) complexes than H6L.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Photochemical degradation of dissolved organic matter (DOM) can influence food webs by altering the availability of carbon to microbial communities, and may be particularly important following periods of high DOM input (e.g. flooding of forested floodplains). Iron oxides can facilitate these reactions, but their influence on subsequent organic products is poorly understood. Degradation experiments with billabong (= oxbow lake) water and river red gum (Eucalyptus camaldulensis) leaf leachate were conducted to assess the importance of these reactions in floodplain systems. Photochemical degradation of DOM in sunlight-irradiated quartz tubes (with and without amorphous iron oxide) was studied using gas chromatography and UV-visible spectroscopy. Photochemical reactions generated gaseous products and small organic acids. Bioavailability of billabong DOM increased following irradiation, whereas that of leaf leachate was not significantly altered. Fluorescence excitation-emission spectra suggested that the humic component of billabong organic matter was particularly susceptible to degradation, and the source of DOM influenced the changes observed. The addition of amorphous iron oxide increased rates of photochemical degradation of leachate and billabong DOM. The importance of photochemical reactions to aquatic systems will depend on the source of the DOM and its starting bioavailability, whereas inputs of freshly formed iron oxides will accelerate the processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we report a simple, rapid, and robust method to synthesize surface-enhanced Raman-scattered gold nanoparticles (GNPs) based on green chemistry. Vitis vinifera L. extract was used to synthesize noncytotoxic Raman-active GNPs. These GNPs were characterized by ultraviolet-visible spectroscopy, dynamic light-scattering, Fourier-transform infrared (FTIR), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy. The characteristic surface plasmon-resonance band at ~528 nm is indicative of spherical particles, and this was confirmed by TEM. The N–H and C–O stretches in FTIR spectroscopy indicated the presence of protein molecules. The predominant XRD plane at (111) and (200) indicated the crystalline nature and purity of GNPs. GNPs were stable in the buffers used for biological studies, and exhibited no cytotoxicity in noncancerous MIO-M1 (Müller glial) and MDA-MB-453 (breast cancer) cell lines. The GNPs exhibited Raman spectral peaks at 570, 788, and 1,102 cm-1. These new GNPs have potential applications in cancer diagnosis, therapy, and ultrasensitive biomarker detection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The homogeneous and stable dispersion of carbon nanotubes (CNTs) in solvents is often a prerequisite for their use in advanced materials. Dispersion procedures, reagent concentration as well as the interactions among reagent, defective CNTs and near-perfect CNTs will affect the resulting CNT dispersion properties. This study, for the first time, presents a detailed comparison between two different approaches for dispersing CNTs. The results enhance our understanding of the interactions between surfactant, defective CNTs and near-perfect CNTs and thus provide insight into the mechanism of CNT dispersion. Dispersions of "as-produced" short multi-walled carbon nanotubes (MWCNTs) in N,N-dimethylformamide were prepared by two different surfactant (Triton X-100) assisted methods: ultrasonication and ultrasonication followed by centrifugation, decanting the supernatant and redispersing the precipitate. Visual observation and UV-visible spectroscopy results showed that the latter method produce a more stable dispersion with higher MWCNT content compared to dispersions produced by ultrasonication alone. Transmission electron microscopy and Raman spectroscopic investigations revealed that the centrifugation/ decanting step removed highly defective nanotubes, amorphous carbon and excess surfactant from the readily re-dispersible near-perfect CNT precipitate. This is contrary to other published findings where the dispersed MWCNTs were found in the supernatant. Thermogravimetric analysis showed that 95 % of Triton X-100 was removed by centrifugation/decanting step, and the remainder of the Triton X-100 molecules is likely randomly adsorbed onto the MWCNT surface. Infrared spectral analysis suggests that the methylene groups of the polyoxyethylene (aliphatic ether) chains of the residual Triton X-100 molecules are interacting with the MWCNTs. © 2014 Springer Science+Business Media.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Graphene oxide (GO) based magnetic nano-sorbent was synthesized by assembling the Fe3O4 and GO on the surface of polystyrene (denoted as PS@Fe3O4@GO). The morphology of the nano-sorbent was studied using scanning electron microscopy (SEM), while their individual nano-components were characterized using UV-visible spectroscopy, atomic force microscopy (AFM), zeta potential, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The assembled nano-sorbent was further investigated for Pb (II) ions removal by optimizing the parameters including pH, temperature and contact time. The obtained data was modelled for adsorption kinetics, adsorption isotherms and thermodynamics. Kinetic experiments indicated the Pb (II) adsorption followed first order kinetics. The adsorption equilibrium data fits Langmuir isotherm model well and the adsorption process was found to be spontaneous. The adsorption capacity of the prepared nano-sorbent was estimated to be 73.52mgg-1, with a maximum removal of 93.78% at pH 6. The nano-sorbent can be regenerated by nitric acid (HNO3) for reuse. FT-IR and X-ray photoelectron spectroscopy (XPS) studies confirmed the interactions between the Pb (II) ions and the nano-sorbent.