8 resultados para Vineyard

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In areas of Australia where viticultural operations have been limited by lack of an acceptable irrigation water source, considerable expansion has occurred through the use of recycled wastewater. Despite this rapid expansion, little is known of the potential impacts of the water’s chemical constituents on soil properties, or the long-term sustainability of the vineyards using the water. In order to establish the impacts of drip irrigated recycled wastewater on a vineyard in Great Western, Australia, a study comparing the soils from the vineyard inter-row and row area was undertaken. Chemical and physical properties of the soil with varying distances from the drip emitter were also investigated. During the irrigation season, significant differences between the inter-row and row area were found for several chemical parameters including pH(1:5soil/water) (P<0.001), electrical conductivity (EC1:5) (P<0.001), water-soluble sodium (WS Na+) (P<0.001), and water-soluble chloride (WS Cl-) (P<0.001). This paper will discuss differences observed between soil properties of the inter-row and vine row area, as well as the spatial distribution of solutes under the drip emitter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study determined the environmental availability of copper (Cu) in Australian vineyard soils contaminated with fungicide derived Cu residues, and investigated the soil characteristics correlated with differences in Cu availability between regions. Concentrations of 0.01 M calcium chloride extractable Cu, measured in surface soils collected from 98 vineyards in 10 different grape-growing regions of Australia, ranged from <0.1 to 0.94 mg/kg and accounted for 0.10−1.03% of the total Cu concentrations in the soils. Differences in the calcium chloride extractable Cu concentrations were related to the total Cu concentration and soil properties, including pH, clay, exchangeable K, silt, and calcium carbonate. The information generated from this study may prove useful in devising strategies to reduce the availability and toxicity of Cu in agricultural soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recycled water has facilitated expansion of viticulture in Great Western, Victoria. The recycled water is of medium salinity, and has high concentrations of nutrients and sodium. Irrigation has resulted in increased topsoil EC, pH, and ESP. Laboratory studies identified spatially heterogeneous soils which present a risk of groundwater and offsite contamination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: Copper-based compounds have been used as agricultural fungicides for many years. Their use in Australia is escalating with increase in the scale of planting and associated pest problems. The objective of this study was to identify viticulture activities associated with high exposure to foliage sprays. It would be determined if occupational exposure of vineyard workers to copper-based sprays was associated with raised body copper levels through analysis of saliva and buccal cells.

Methods: The activities of six vineyard workers from four vineyards in the Yarra Valley Victoria, Australia, were monitored over a period of 2 years. During this period, workers carried out seasonal activities, including fungicide spraying, canopy management, and tractor operation. Saliva and buccal cells from workers were collected and analysed for copper levels that were then correlated with the different types of vineyard activity.

Results: The buccal cells of vineyard workers exposed to copper through seasonal activities including fungicide spraying, canopy management, and tractor operation contained copper levels of 0.87, 1.24, and 0.95 ng Cu per 106 cells, respectively. This was up to 10-fold higher than the copper levels in buccal cells from the control subjects (0.1 ng Cu per 106). Copper levels in buccal cells from workers participating in other viticulture activities such as shoot thinning, bunch counting, and disbudding were not significantly different from those of control subjects. The levels of copper in saliva samples of both workers undertaking any vineyard activity and control subjects were below the level of detection.

Conclusions: Seasonal activities undertaken in vineyards that involved direct contact with copper, in particular canopy management, fungicidal spraying, and tractor operation were associated with high copper levels in buccal cells of workers. This indicates that copper derived from copper-based fungicidal compounds is accumulated within body cells. The lack of detectable copper levels in saliva suggests that the route of transport of copper into buccal cells is not through saliva. The results indicate potential adverse health risks associated with use of copper fungicide. Recommendations are made in relation to the precautions that should be taken in relation to use of copper sprays and to validate buccal cells as an indicator of body copper status.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The viticultural industry is becoming an increasingly significant part of the Australian agricultural sector, with gross earnings of over $4 billion in 2002. Expansion of the industry in the last decade has been rapid, however its heavy reliance on irrigation has resulted in further expansion in many wine growing regions being limited by the availability of water. This problem is not confined to the viticultural industry, with ever increasing pressures on water resources worldwide. As demands for water continue to rise, new strategies to meet demands must be adopted. One of the strategies being increasingly employed is the recycling of waste waters for a number of applications such as irrigation and industrial uses. The use of recycled water for vineyard irrigation provides a number of benefits. Among them are the reduced demands on potable supplies, reduced waste discharges to surface waters, and the opportunity for expansion of production. Recycled waters however, contain constituents which have the potential to cause deleterious effects to both production and the environment. Therefore, the use of recycled water for irrigation requires targetted monitoring and management to ensure the long-term sustainability of both the vineyard and the surrounding environment. Traditional monitoring techniques including water quality monitoring and soil testing can be complimented by new technologies and techniques which provide large quantities of information with relatively less labour and time. Such techniques can be used to monitor the vineyard environment to identify impacts arising from management practices, allowing vineyard managers to adjust management for sustainable production