14 resultados para Vegetation Change

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aim: To reconstruct ecological changes from the fossil record of a unique wetland on the tropical oceanic island of Tahiti, between 44.5 and 38 cal. kyr bp. Location: Vaifanaura'amo'ora, Tamanu Plateau, Punaru'u Valley, Tahiti, Society Islands, French Polynesia (17°38'S, 149°32'50″E). Methods: Fossil pollen, spores, seeds, diatoms and invertebrates were examined from a 3.7 m core consisting of Pleistocene-aged algal sediment overlain by late Holocene peat. Results: Between 44.5 and 41.5 cal. kyr bp, Ficus trees, sub-shrubs including Sigesbeckia orientalis L., the C4 grass species Paspalum vaginatum Sw., and extinct Pritchardia palms dominated the Vaifanaura'amo'ora wetland. This vegetation association is no longer present in the tropical oceanic Pacific islands. After 41.5 cal. kyr bp, the climate rapidly became drier and cooler with grasses, sedges and ferns dominating the vegetation. Algal sediment accumulation ceased after 38 cal. kyr bp due to prolonged dry climate conditions recorded across the Pacific Ocean. Sediment accumulation recommenced in the late Holocene. Main conclusions: The ecological responses identified from Tahiti provide evidence counter to the prevailing view that the tropical oceans buffered the ecological effects of abrupt climate changes during the last glacial period.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Habitat loss and fragmentation on the Mornington Peninsula, Victoria, Australia, has resulted in a mosaic of forest patches, forest edges abutted by agricultural land and linear habitat strips amidst a human-modified land matrix. To examine the use of forest elements by the avifauna in this landscape, bird populations were sampled along fixed transects established within forest interiors, on forest edges and along forested roadsides. A total of 60 species was recorded during this study, five of which were introduced. Species richness and diversity did not differ significantly between the three habitat elements, but avifaunal composition varied considerably. The species assemblages of all habitat elements differed significantly, with forest interiors and roadsides showing the greatest difference and forest interiors and forest edges showing the least degree of difference. Forest-dependent bird species used both interiors and edges. Interiors differed from edges and roadsides in having lower abundances of open country species, predatory species and introduced species. A clear gradient of change in bird communities from forest interiors to roadside vegetation was observed. This study suggests that the interiors of medium-sized (<1 000 ha) patches may play an important role in conserving bird biodiversity on a local level as they provide refuge for forest-dependent native species in extensively cleared landscapes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most studies of habitat use by small mammals rely on data from trapping grids. Such studies pertain to habitat use by individuals, which may not reflect population-level requirements. To meet the challenge of landscape change, it is important to understand habitat use by populations across large geographic areas. We surveyed small mammals in 48 forest remnants across a 300 km2 study area, to investigate the influence of vegetation heterogeneity on regional distributions. Information-theoretic techniques were used to evaluate models of vegetation associations. Richness of native mammals was influenced by vegetation condition: disturbed sites supported fewer species. Models for individual species showed the agile antechinus, Antechinus agilis, to prefer structurally diverse forest vegetation, the long-nosed potoroo, Potorous tridactylus, to favour mesic shrub communities, the bush rat, Rattus fuscipes, to prefer complex low cover regardless of composition, the swamp rat, Rattus lutreolus, to favour reduced canopy cover, and the house mouse, Mus domesticus, to prefer disturbed vegetation. To satisfy the needs of all native species, a mosaic of natural vegetation is required. Degradation and simplification of forest vegetation have detrimental consequences. These results highlight the need to consider habitat quality, together with more traditional biogeographic variables, when investigating factors influencing patch occupancy by native fauna in modified landscapes.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In 2005, the Victorian government asked the Victorian Environmental Assessment Council (VEAC) to 1) identify and evaluate the extent, condition, values, management, resources and uses of riverine red gum forests and associated fauna, wetlands, floodplain ecosystems and vegetation communities in northern Victoria; and 2) make recommendations relating to the conservation, protection and ecological sustainable use of public land. The design of a comprehensive, adequate and representative (CAR) reserve system was a key part of the recommendations made by VEAC. In order to assist in the decision-making for environmental water allocation for protected areas and other public land, a process for identifying flood-dependent natural values on the Victorian floodplains of the River Murray and its tributaries was developed.

Although some areas such as the Barmah forest are very well known, there have been few comprehensive inventories of important natural values along the Murray floodplains. For this project, VEAC sought out and compiled data on flood requirements (natural flood frequency, critical interval between floods, minimum duration of floods) for all flood-dependent ecological vegetation classes (EVCs) and threatened species along the Goulburn, Ovens, King and Murray Rivers in Victoria. The project did not include the Kerang Lakes and floodplains of the Avoca, Loddon and Campaspe Rivers. 186 threatened species and 110 EVCs (covering 224,247 ha) were identified as flood-dependent and therefore at risk from insufficient flooding.

Past environmental water allocations have targeted a variety of different natural assets (e.g. stressed red gum trees, colonial nesting waterbirds, various fish species), but consideration of the water requirements of the full suite of floodplain ecosystems and significant species has been limited. By considering the water requirements of the full range of natural assets, the effectiveness of water delivery for biodiversity can be maximised. This approach highlights the species and ecosystems most in need of water and builds on the icon sites approach to view the Murray floodplains as an interconnected system. This project also identified for the first time the flood-frequency and duration requirements for the full suite of floodplain ecosystems and significant species.

This project is the most comprehensive identification of water requirements for natural values on the floodplain to date, and is able to be used immediately to guide prioritisation of environmental watering. As more information on floodplain EVCs and species becomes available, the water requirements and distribution of values can be refined by ecologists and land and water managers. That is, the project is intended as the start of an adaptive process allowing for the incorporation of monitoring and feedback over time. The project makes it possible to transparently and easily communicate the extent to which manipulated or natural flows benefit various natural values. Quantitative and visual outputs such as maps will enable environmental managers and the public to easily see which values do and do not receive water (see http://www.veac.vic.gov.au/riverredgumfinal.htm for further details).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim. We characterized changes in reporting rates and abundances of bird species over a period of severe rainfall deficiency and increasing average temperatures. We also measured flowering in eucalypts, which support large numbers of nectarivores characteristic of the region.

Location.  A 30,000-km2 region of northern Victoria, Australia, consisting of limited amounts of remnant native woodlands embedded in largely agricultural landscapes.

Methods. There were three sets of monitoring studies, pitched at regional  (survey programmes in 1995–97, 2004–05 and 2006–08), landscape (2002–03 and 2006–07) and site (1997–2008 continuously) scales. Bird survey techniques used a standard 2-ha, 20-min count method. We used Bayesian analyses of reporting rates to document statistically changes in the avifauna through time at each spatial scale.

Results. Bird populations in the largest remnants of native vegetation (up to 40,000 ha), some of which have been declared as national parks in the past decade, experienced similar declines to those in heavily cleared andscapes. All categories of birds (guilds based on foraging substrate, diet, nest site; relative mobility; geographical distributions) were affected similarly. We detected virtually no bird breeding in the latest survey periods. Eucalypt flowering has declined significantly over the past 12 years of drought.

Main conclusions. Declines in the largest woodland remnants commensurate with those in cleared landscapes suggest that reserve systems may not be relied upon to sustain species under climate change. We attribute population declines to low breeding success due to reduced food. Resilience of bird populations in this woodland system might be increased by active management to enhance habitat quality in existing vegetation and restoration of woodland in the more fertile parts of landscapes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human modification of landscapes typically results in many species being confined to small, isolated and degraded habitat fragments. While fragment size and isolation underpin many studies of modified landscapes, vegetation characteristics are less frequently incorporated. The relative influence of biogeographic (e.g. size, isolation) and vegetation parameters on assemblages is poorly understood, but critical for conservation management. In this study, a multiple hypothesis testing framework was used to determine the relative importance of biogeographic and vegetation parameters in explaining the occurrence of an assemblage of small mammals in 48 forest fragments in an agricultural landscape in south-eastern Australia. Fragment size and vegetation characteristics were consistently important predictors of occurrence across species. In contrast, fragment isolation was important for just one native species. Differing abilities of species to move through the landscape provide a reasonable explanation for these results. We conclude that for effective conservation of assemblages, it is important to: (1) consider differing responses of species to landscape change, and (2) move beyond a focus primarily on spatial attributes (size, isolation) to recognise that landscape change also has profound effects on habitat composition and quality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Gunditjmara people developed a socio-economic system based on the modification of wetland ecosystems associated with the Mt Eccles lava flow primarily for sustainable production and management of the highly nutritious shortfin eel (Anguilla australis). This paper examines the environmental history of these landscapes since their inception about 30 000 years ago, through palaeoecological analysis of sediment cores from associated lakes and swamps, in order to contribute to an understanding of the causes and timing of cultural transformation. Two records cover the whole of the 30 000 year history of the landscape while two others provide evidence of change within the Holocene. A great deal of variation within the landscape is revealed, both temporally and spatially, with opportunities for human exploitation through the whole recorded period. Although most features of the records can be explained by natural landscape development and climate change, some human modification can be suggested from around the Pleistocene—Holocene transition while more obvious indications of management relating to eel aquaculture are evident from about 4000 cal. yr BP that appear to include adaptations to the onset of a drier and more variable climate. The study has implications for the explanation of intensification of settlement in Australia more generally within the mid to late Holocene.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Identifying landscape patterns that allow native fauna to coexist with human land use is a global challenge. Riparian vegetation often persists in anthropogenic environments as strips of natural or semi-natural vegetation that provide habitat for many terrestrial species. Its relative contribution to landscape-scale conservation is likely to change as environments become increasingly modified. We used a ‘whole of landscape’ approach to test the hypothesis that riparian vegetation offers disproportionate benefits, relative to non-riparian vegetation, for the conservation of woodland birds in highly modified agricultural landscapes. 2. We selected 24 landscapes, each 100 km2, along a gradient of landscape change represented by decreasing cover of native vegetation (from 60% to <2%), in an agricultural region in SE Australia. Bird species were systematically surveyed at three riparian and seven non-riparian sites in wooded vegetation in each landscape. 3. Riparian sites supported a greater richness of woodland-dependent species, a group of conservation concern, than did non-riparian sites. The composition of assemblages also differed between site types. 4. At the landscape scale, the pooled richness of bird assemblages at riparian and non-riparian sites, respectively, decreased with overall loss of tree cover despite constant sampling effort. Within landscapes, the β-diversity of woodland species among non-riparian sites increased (composition became less similar) as landscape tree cover declined. In contrast, riparian assemblages were relatively stable with no change in β-diversity. Importantly, as landscape tree cover declined, the proportion of woodland species uniquely present at riparian sites increased and made a greater contribution to overall landscape diversity. 5. Synthesis and applications. Landscape-scale richness of woodland species declines as landscape tree cover is lost. In highly depleted landscapes, riparian vegetation retains a relatively rich, stable assemblage compared with that in heterogeneous remnants of non-riparian vegetation and consequently contributes disproportionately to landscape-scale diversity. These observations, together with the diverse benefits of riparian vegetation for aquatic ecosystems, mean that protection and restoration of riparian vegetation is a high priority in anthropogenic environments. Importantly, such actions are directly amenable to individual land managers, and the benefits will accumulate to enhance the persistence and conservation of species at landscape and regional scales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Remote sensing is a useful tool for detecting change over time.We introduce a hybrid change-detection method for forest and protected-area vegetation and demonstrate its use with two satellite images of Golestan National Park in northern Iran (1998 and 2010). We report on the advantages and disadvantages of the hybrid method relative to the standard change-detection method. In the proposed hybrid algorithm, the change vector analysis technique was used to determine changes in vegetation. Following this, we used postclassification comparison to determine the nature of the changes observed and their accuracy and to evaluate the effects of different parameters on the performance of the proposed method. We determined 85% accuracy for the proposed hybrid change-detection method, thus demonstrating a method for discovering and assessing environmental threats to natural treasures. © 2014 Society of Photo-Optical Instrumentation Engineers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Archaeology’s ability to generate long-term datasets of natural and human landscape change positions the discipline as an inter-disciplinary bridge between the social and natural sciences. Using a multi-proxy approach combining archaeological data with palaeoenvironmental indicators embedded in coastal sediments, we outline millennial timescales of lowland landscape evolution in the Society Islands. Geomorphic and cultural histories for four coastal zones on Mo‘orea are reconstructed based on stratigraphic records, sedimentology, pollen analysis, and radiocarbon determinations from mid- to late Holocene contexts. Prehuman records of the island’s flora and fauna are described utilizing landsnail, insect, and botanical data, providing a palaeo-backdrop for later anthropogenic change. Several environmental processes, including sea level change, island subsidence, and anthropogenic alterations, leading to changes in sedimentary budget have operated on Mo‘orea coastlines from c. 4600 to 200 BP. We document significant transformation of littoral and lowland zones which obscured earlier human activities and created significant changes in vegetation and other biota. Beginning as early as 440 BP (1416–1490 cal. ad), a major phase of sedimentary deposition commenced which can only be attributed to anthropogenic effects. At several sites, between 1.8 and 3.0 m of terrigenous sediments accumulated within a span of two to three centuries due to active slope erosion and deposition on the coastal flats. This phase correlates with the period of major inland expansion of Polynesian occupation and intensive agriculture on the island, indicated by the presence of charcoal throughout the sediments, including wood charcoal from several economically important tree species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

 Aim: We investigated how the probability of burning is influenced by the time since fire (TSF) and gradients of climate, soil and vegetation in the fire-prone mediterranean-climate mallee woodlands of south-eastern Australia. This provided insight into the processes controlling contemporary fuel dynamics and fire regimes across biogeographical boundaries, and the consequent effects of climate change on potential shifts in boundaries between fuel systems and fire regimes, at a subcontinental scale. Location: South-eastern Australia. Methods: A desktop-based GIS was used to generate random sampling points across the study region to collect data on intersecting fire interval, rainfall, vegetation and soil type. We used a Bayesian framework to examine the effects of combinations of rainfall, vegetation and soil type on the hazard-of-burning and survival parameters of the Weibull distribution. These analyses identify the nature of environmental controls on the length of fire intervals and the age-dependence of the hazard of burning. Results: Higher rainfall was consistently associated with shorter fire intervals. Within a single level of rainfall, however, the interaction between soil and vegetation type influenced the length of fire intervals. Higher-fertility sands were associated with shorter fire intervals in grass-dominated communities, whereas lower-fertility sands were associated with shorter fire intervals in shrub-dominated communities. The hazard of burning remained largely independent of TSF across the region, only markedly increasing with TSF in shrub-dominated communities at high rainfall. Main conclusions: Rainfall had a dominant influence on fire frequency in the mediterranean-climate mallee woodlands of south-eastern Australia. Predicted changes in the spatial distribution and amount of rainfall therefore have the potential to drive changes in fire regimes, although the effects of soil fertility and rainfall on fire regimes do not align on a simple productivity gradient. Reduced soil fertility may favour plant traits that increase the rate of woody litter fuel accumulation and flammability, which may alter the overriding influence of rainfall gradients on fire regimes.