11 resultados para Unmanned Aerial Vehicle

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing use of commercial off-the-shelf Mini-Micro Unmanned Aerial Vehicle (MAV) systems with enhanced intelligence methodologies can potentially be a threat, if this technology falls into the wrong hands. In this study, we investigate the level of threat imposed on critical infrastructure using different MAV swarm artificial intelligence traits and coordination methodologies. The critical infrastructure in consideration is a moving commercial land vehicle that may be transporting for example an important civil servant or politician. Non-dimensional fitness functions used for measuring MAV mission effectiveness have been established for the case studies considered in this paper. The findings indicated that increased in intelligent and coordination level elevate teams' efficiency, therefore poses a higher degree of threat to targeted land vehicle. Observations from the study have suggested that memory-based cooperative technique provides a consistent efficiency compared to other methods for the mission objectives considered in this paper. © 2014 The authors and IOS Press. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract - An unmanned aerial vehicle (UAV) has many applications in a variety of fields. Detection and tracking of a specific road in UAV videos play an important role in automatic UAV navigation, traffic monitoring, and ground–vehicle tracking, and also is very helpful for constructing road networks for modeling and simulation. In this paper, an efficient road detection and tracking framework in UAV videos is proposed. In particular, a graph-cut–based detection approach is given to accurately extract a specified road region during the initialization stage and in the middle of tracking process, and a fast homography-based road-tracking scheme is developed to automatically track road areas. The high efficiency of our framework is attributed to two aspects: the road detection is performed only when it is necessary and most work in locating the road is rapidly done via very fast homography-based tracking. Experiments are conducted on UAV videos of real road scenes we captured and downloaded from the Internet. The promising results indicate the effectiveness of our proposed framework, with the precision of 98.4% and processing 34 frames per second for 1046 x 595 videos on average.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aerial imagery collected before and after major storm events is ideal for the assessment of coastal landscape change driven by individual high-magnitude events. Using traditional satellite sensors and manned aerial systems can be challenging due to issues related to cloud cover, mobilization expenses and resolution. Rapid advances in unmanned aerial vehicle (UAV) technology allow for the cost-effective collection of aerial imagery and topography at centimetre resolution suitable for assessing change in coastal ecosystems. In this study we demonstrate the utility of UAV-based photogrammetry to quantify storm-driven sediment dynamics on a sandy beach on the open-coast shoreline of Victoria, Australia. UAV-based aerial photography was collected before and after a major storm event. High-resolution (< 5 cm) aerial imagery and digital surface models were acquired and change-detection techniques were applied to quantify changes in the beachface. An average beach erosion of 12.24 m3/m with a maximum of 28.05 m3/m was observed, and the volume of sand cut from the beachface and retreat of the foredune are clearly illustrated. Following the storm event, erosion was estimated at 7259.94 ± 503.69 m3 along 550 m of beach. By combining the aerial imagery and derived topographic datasets we demonstrate the advantage of UAV-based photogrammetry techniques for rapid high-resolution data collection in semi-remote locations. Its utility in setting unlimited virtual vantage points is also illustrated and the valuable perspective it provides for tracking landscape change discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, unmanned aerial vehicle (UAV) has been widely adopted in military and civilian applications. For small UAVs, cooperation based on communication networks can effectively expand their working area. Although the UAV networks are quite similar to the traditional mobile ad hoc networks, the special characteristics of the UAV application scenario have not been considered in the literature. In this paper, we propose a distributed gateway selection algorithm with dynamic network partition by taking into account the application characteristics of UAV networks. In the proposed algorithm, the influence of the asymmetry information phenomenon on UAVs' topology control is weakened by dividing the network into several subareas. During the operation of the network, the partition of the network can be adaptively adjusted to keep the whole network topology stable even though UAVs are moving rapidly. Meanwhile, the number of gateways can be completely controlled according to the system requirements. In particular, we define the stability of UAV networks, build a network partition model, and design a distributed gateway selection algorithm. Simulation results show using our proposed scheme that the faster the nodes move in the network, the more stable topology can be found, which is quite suitable for UAV applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present a hardware in the loop simulation of our proposed multi-surface sliding control (MSSC) for trajectory tracking of 6 degrees of freedom (6-DOF) inertia coupled aerial vehicles with multiple inputs and multiple outputs (MIMO). Using MSSC on MIMO autonomous flight systems creates confluent control that can account for both matched and mismatched uncertainties, system disturbances and excitation in internal dynamics. The control law is implemented on an onboard computer and is validated though Hardware-In-the-Loop (HIL) simulations, between the hardware and the flight simulator X-Plane, which simulates the unmanned aircraft dynamics, sensors, and actuators. Simulation results are presented to validate the analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

 We propose a fast approach for detecting and tracking a specific road in aerial videos. It combines adaptive Gaussian Mixture Models (GMMs) to describe road colour distributions, and homography based tracking to track road geometries, where an efficient technique is developed to estimate homography transformations between two frames. Experiments are conducted on videos captured by our unmanned aerial vehicles. All the results demonstrate the effectiveness of our proposed method. We test 1755 frames from 5 videos. Our approach can achieve 0.032 seconds per frame and 2.64% segmentation error for images with 908 × 513 resolutions, on average.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The thesis focused on development of an auto-pilot system for UAV’s and small fixed wing aircraft for use in hazardous flight conditions, such as severe weather. This led to development of a mathematical algorithm that unbinds the flight systems from coupling effects which can adaptively changed to the environment.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

There are few regulatory restrictions involving the use of fully autonomous unmanned aerial systems in unpopulated, farming areas of Australia. The combination of a fully autonomous aerial and ground systems would provide efficient and cost effective retrieval of soil and vegetation data for use in precision agriculture. The aerial system will survey the site and collect spectral imagery to analyse plant density, stress and nutrition. The ground sensors will collect soil moisture content readings throughout the site. The data from both systems will be collated at a central base station. The base station will also provide housing and interface with the aerial system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Optimizing energy consumption for extending the lifetime in wireless sensor networks is of dominant importance. Groups of autonomous robots and unmanned aerial vehicles (UAVs) acting as mobile data collectors are utilized to minimize the energy expenditure of the sensor nodes by approaching the sensors and collecting their buffers via single hop communication, rather than using multihop routing to forward the buffers to the base station. This paper models the sensor network and the mobile collectors as a system-of-systems, and defines all levels and types of interactions. A practical framework that facilitates deploying heterogeneous mobiles without prior knowledge about the sensor network is presented. Realizing the framework is done through simulation experiments and tested against several performance metrics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This edited collection brings together leading scholars to comparatively investigate national security, surveillance and terror in the early 21st century in two major western jurisdictions, Canada and Australia. Observing that much debate about these topics is dominated by US and UK perspectives, the volume provides penetrating analysis of national security and surveillance practices in two under-studied countries that reveals critical insights into current trends. Written by a wide range of experts in their respective fields, this book addresses a fascinating array of timely questions about the relationship among national security, privacy and terror in the two countries and beyond. Chapters include critical assessments of topics such as: National Security Intelligence Collection since 9/11, The Border as Checkpoint in an Age of Hemispheric Security and Surveillance, Unmanned Aerial Vehicles and Law Enforcement, as well as Federal Government Departments and Security Regimes. An engaging and empirically driven study, this collection will be of great interest to scholars of security and surveillance studies, policing, and comparative criminology.