145 resultados para Ultrafine Particles

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein fibre wastes from animal hairs, feathers and insect secreted filaments can be aptly utilized by converting them into ultra-fine particles. Particles from animal protein fibres present large surface-to-weight ratio and significantly enhanced surface reactivity, that have opened up novel applications in both textile and non-textile fields. This review article summarizes the state-of-the-art routes to fabricate ultrafine particles from animal protein fibres, including direct route of mechanical milling of fibres and indirect route from fibre proteins. Ongoing research trends in novel applications of protein fibre particles in various fields, such as biomedical science, environmental protection and composite structures are presented. © 2014 The Korean Fiber Society and Springer Science+Business Media Dordrecht.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soft viscoelastic fibres, which are very difficult to grind, can be processed to produce ultrafine particles. This work has created knowledge about new applications of these natural structural proteins. The high reactivity generated through creation of large surface area has been used to design advanced devices and applications. For example particles have been studied for separation of harmful ions from waste water and applied to develop porous composite materials to grow bones to repair critical bone defects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A process for producing plate-like alumina particles with a high aspect ratio is described. Nano-sized particles of an aluminium precursor compound, optionally formed by milling, are mixed with a sufficient volume fraction of a diluent and heat treated to form substantially discrete plate-like alpha alumina particles dispersed in the diluent. A mineraliser may be added to lower the effective melting point of the system. Substantially discrete plate-like particles may be formed without agitation when the heat treatment is conducted below the melting point of the diluent.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A process for producing plate-like alumina particles with a high aspect ratio is described. Nano-sized particles of an aluminium precursor compound, optionally formed by milling, are mixed with a sufficient volume fraction of a diluent and heat treated to form substantially discrete plate-like alpha alumina particles dispersed in the diluent. A mineraliser may be added to lower the effective melting point of the system. Substantially discrete plate-like particles may be formed without agitation when the heat treatment is conducted below the melting point of the diluent.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Silk particles of different sizes and shapes were produced by milling and interactions with a series of polar and non-polar gaseous probes were investigated using an inverse gas chromatography technique. The surface energy of all silk materials is mostly determined by long range dispersive interactions such as van der Waals forces. The surface energy increases and surface energy heterogeneity widens after milling. All samples have amphoteric surfaces and the concentration of acidic groups increases after milling while the surfaces remain predominantly basic. We also examined powder compression and flow behaviours using a rheometer. Increase in surface energy, surface area, and static charges in sub-micron air jet milled particles contributed to their aggregation and therefore improved flowability. However they collapse under large pressures and form highly cohesive powder. Alkaline hydrolysis resulted in more crystalline fibres which on milling produced particles with higher density, lower surface energy and improved flowability. The compressibility, bulk density and cohesion of the powders depend on the surface energy as well as on particle size, surface area, aggregation state and the testing conditions, notably the consolidated and unconsolidated states. The study has helped in understanding how surface energy and flowability of particles can be changed via different fabrication approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, the effect of nominal equivalent strain (between 0 and 1.2), deformation temperature (790– 750°C) and carbon content (0.06 – 0.35%C) was investigated on ferrite grain refinement through dynamic strain induced transformation (DSIT) in plain carbon steels in single pass rolling. The microstructural evolution of the transformation of austenite to ferrite has been evaluated through the thickness of the strip. The results showed a number of important microstructural features as a function of strain, which could be classified into three regions; no DSIT region, DSIT region, and ultrafine ferrite (UFF) grain region. Hence, two critical strains; dynamic strain induced transformation (εC, DSIT) and ultrafine ferrite formation (εC, UFF) were determined. These strains were increased significantly with an increase in carbon content. The critical strain for UFF formation reduced with decrease in deformation temperature. The UFF microstructure consisted of ultrafine, equiaxed ferrite grains (<2 μm) with very fine cementite particles. In the centre of the rolled strip, there was a conventional ferrite– pearlite microstructure, although ferrite grain refinement and the volume fraction of ferrite increased with increase in the nominal equivalent strain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, wedge-shaped samples were used to determine the effect of nominal equivalent strain (between 0 and 1.2) and carbon content (0.06--0.35%C) on ferrite grain refinement through dynamic strain-induced transformation (DSIT) in plain carbon steels using single-pass rolling. The microstructural evolution of the transformation of austenite to ferrite has been evaluated through the thickness of the strip. The results showed a number of important microstructural features as a function of strain which could be classified into three regions; no DSIT region, DSIT region and the ultrafine ferrite (UFF) grain region. Also, the extent of these regions was strongly influenced by the carbon content. The UFF microstructure consisted of ultrafine, equiaxed ferrite grains (<2 μ$m) with very fine cementite particles. In the centre of the rolled strip, there was a conventional ferrite-pearlite microstructure, although ferrite grain refinement and the volume fraction of ferrite increased with an increase in the nominal equivalent strain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis of ultrafine cerium dioxide (CeO2) powders via mechanochemical reaction and subsequent calcination was studied. Anhydrous CeCl3 and NaOH powders, along with NaCl diluent, were mechanically milled. A solid-state displacement reaction—CeCl3+ 3NaOH → Ce(OH)3+ 3NaCl—was induced during milling in a steady-state manner. Calcination of the as-milled powder in air at 500°C resulted in the formation of CeO2 nanoparticles in the NaCl matrix. A simple washing process to remove the NaCl yielded CeO2 particles ∼10 nm in size. The particle size was controlled in the range of ∼10–500 nm by changing the calcination temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fibroin protein derived from silk fibres has been extensively studied with exciting outcomes for a number of potential advanced biomaterial applications. However, one of the major challenges in applications lies in engineering fibroin into a  desired form using a convenient production technology. In this paper, fabrication of ultrafine powder from eri silk is reported. The silk cocoons were degummed and the extracted silk fibres were then chopped into snippets prior to attritor and air jet milling. Effects of process control agents, material load and material to water ratio during attritor milling were studied. Compared to dry and dry–wet attritor milling, wet process emerged as the preferred option as it caused less colour change and facilitated easy handling. Ultrafine silk powder with a volume based particle size d(0.5) of around 700 nm could be prepared following the sequence of chopping ➔ wet attritor milling ➔ spray drying ➔ air jet milling. Unlike most reported powder production methods, this method could fabricate silk particles in a short time without any pre-treatment on degummed fibre. Moreover, the size range obtained is much smaller than that previously produced using standard milling devices. Reduction in fibre tenacity either shortened the milling time even further or helped bypassing media milling to produce fine powder directly through jet milling. However, such reduction in fibre strength did not help in increasing the ultimate particle fineness. The study also revealed that particle density and particle morphology could be manipulated through appropriate changes in the degumming process.

Graphical Abstract:  Fabrication of eri silk powder using attritor and jet milling is reported. Volume based particle size d(0.5) of around 700 nm could be prepared following the sequence chopping ➔ wet attritor milling ➔ spray drying ➔ air jet milling. No pre-treatments were used and the particle size range obtained is much smaller than that previously produced using standard milling devices. Particle density morphology could be manipulated through appropriate changes of cocoon degumming conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A process for the production of ultrafine powders consisting of individual particles with sizes in the range of 1 nm to 200 nm, which is based on the mechanical milling of two or more non-reacting powders. The process includes subjecting a suitable precursor metal compound and a non-reactant diluent phased to mechanical milling which through the process of mechanical activation reduces the microstructure of the mixture of the form of nano-sized grains of the metal compound uniformly dispersed in the diluent phase. Heat treating the milled powder converts the nano-sized grains of the precursor metal compound into a desired metal oxide phase. Alternatively, the precursor metal compound may itself be an oxide phase which has the requisite milling properties to form nanograins when milled with a diluent. An ultrafine powder is produced by removing the diluent phase such that nano-sized grains of the desired metal oxide phase are left behind. The process facilitates a significant degree of control over the particle size and size distribution of the particles in the ultrafine powder by controlling the parameters of mechanical activation and heat treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrafine protein particles have been fabricated from natural fibres, such as silk and wool. Our studies suggested that particles could be used for fabricating tough macro-porous composites scaffolds for tissue engineering. They are also efficient for reversible binding of metal ions. We are currently analyzing the sorption properties, biocompatibility and biodegradability of a range of particles to evaluate possibility for biomedical and healthcare applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to understand the structure and biodegradation relationships of silk particles intended for targeted biomedical applications. Such a study is also useful in understanding structural remodelling of silk debris that may be generated from silk-based implants. Ultrafine silk particles were prepared using a combination of efficient wet-milling and spray-drying processes with no addition of chemicals other than those used in degumming. Milling reduced the intermolecular stacking forces within the β-sheet crystallites without changing the intramolecular binding energy. Because of the rough morphology and the ultrafine size of the particles, degradation of silk particles by protease XIV was increased by about 3-fold compared to silk fibers. Upon biodegradation, the thermal degradation temperature of silk increased, which was attributed to the formation of tight aggregates by the hydrolyzed residual macromolecules. A model of the biodegradation mechanism of silk particles was developed based on the experimental data. The model explains the process of disintegration of β-sheets, supported by quantitative secondary structural analysis and microscopic images. © 2012 American Chemical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cashmere guard hair, an industrial animal protein fibre waste material has been very first time converted into ultra-fine powder particles. The work also demonstrates potential of the newly developed particles in high value technical applications such as toxic heavy metal ion separation and surface functionalization of textile fabrics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes, for the first time, a simple and effective synthetic route for covalently bonding the chemiluminescence reagent, (4-[4-(dichloromethylsilanyl)-butyl]-4’-methyl-2,2’-bipyridyl)bis(2,2’-bipyridyl)ruthenium(II) onto silica particles. The subsequent preparation of chemically regeneratable detection cells and their preliminary analytical evaluation with both sequential injection analysis and flow injection analysis are also reported. Unoptimised analytical figures of merit were established for standard solutions of codeine and sodium oxalate with detection limits calculated from three times the standard deviation of the blank signal, of 1 × 10–8 M and 3 × 10–7 M respectively. The chemically immobilised reagent exhibited some intriguing solvent and kinetic effects, which are also briefly discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A plain carbon steel was deformed using a hot torsion deformation simulator. A schedule known to produce strain-induced ferrite was used with the strain interrupted for increasing intervals of time to determine the effect of an isothermal hold on the final microstructure. Microscopy and electron back-scattered diffraction (EBSD) were used to analyse the changes that occurred in the partially transformed microstructure during the hold and the subsequent applied strain. The strain-induced ferrite coarsened during the hold and this coarsened ferrite was refined during the second deformation. These results were compared to those obtained for a different plain carbon steel deformed in single pass rolling close to the Ar3 temperature.