5 resultados para Udp-galnac

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amoebiasis/amebiasis is a gastrointestinal infection caused by an enteric dwelling protozoan, Entamoeba histolytica. The disease is endemic in the developing world and is transmitted mainly via the faecal-oral route (e.g., in water or food) and may or may not be symptomatic. This disease of socio-economic importance worldwide involves parasite adherence and cytolysis of human cells followed by invasion that is mediated by galactose-binding (Gal/GalNAc) surface lectin. Disruption of the mucus layer leads to invasive intestinal and extraintestinal infection. Gal-lectin based vaccinations have conferred protection in various animal models against E. histolytica infections. Keeping in view the pivotal role of Gal/GalNAc lectin in amoebiasis vaccine development, its regulation, genomic view of the parasite involving gene conversion in lectin gene families, current knowledge about involvement of Gal/GalNAc lectin in adherence, pathogenicity, signalling, encystment, generating host immune response, and in turn protozoa escape strategies, and finally its role as effective vaccine candidate has been described. This review will help researchers to explore pathogenesis mechanism along with genomic studies and will also provide a framework for future amoebiasis vaccine development studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bovine Muc1 protein is synthesized by mammary epithelial cells and shed into milk as an integral component of the milk fat globule membrane; however, the structure and functions of this mucin, particularly in relation to lactation, are poorly defined. The objectives of this investigation were to investigate the Muc1 gene and protein structures in the context of lactation and to test the hypothesis that Muc1 has a role in innate immune defense. Polymerase chain reaction analysis of genomic DNA from 630 cattle revealed extensive polymorphism in the variable number of tandem repeats (VNTR) in the bovine Muc1 gene. Nine allelic
variants spanning 7 to 23 VNTR units, each encoding 20 AA, were identified. Three alleles, containing 11, 14, and 16 VNTR units, respectively, were predominant. In addition, a polymorphism in one of the VNTR units has the potential to introduce a unique site for N-linked glycosylation. Statistical analysis indicated weak associations between the VNTR alleles and milk protein and fat percentages in a progeny-tested population of Holstein-Friesian dairy cattle. No association with somatic cell count could be demonstrated. Bovine Muc1 was purified from milk fat globule membranes and characterized. The protein was highly glycosylated, primarily with O-linked sialylated T-antigen [Neu5Ac(α2–3)-Gal(β1–3)-GalNAcα1] and, to a lesser extent, with N-linked oligosaccharides, which together accounted for approximately 60% of the apparent mass of Muc1. Purified bovine Muc1 directly bound fluorescently labeled Escherichia coli BioParticles (Invitrogen, Mount Waverley, Australia) and inhibited their binding to bovine mammary epithelial cells grown in vitro.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the increasing trends of mobile interactions, voice authentication applications are in a higher demand, giving rise to new rounds of research activities. Authentication is an important security mechanism that requires the intended communication parties to present valid credentials to the communication network. In a stronger sense, all the involved parties are required to be authenticated to one another (mutual authentication). In the voice authentication technique described in this paper, the voice characteristics of an intended individual wishing to take part in a communication channel will be classified and processed. This involves a low overhead voice authentication scheme, which features equalization and scaling of the voice frequency harmonics. The performance of this system is discussed in a Labview 8.5 visual development environment, following a complete security analysis. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Unknown RFID tags appear when the unread tagged objects are moved in or tagged objects are misplaced. This paper studies the practically important problem of unknown tag detection while taking both time-efficiency and energy-efficiency of battery-powered active tags into consideration. We first propose a Sampling Bloom Filter which generalizes the standard Bloom Filter. Using the new filtering technique, we propose the Sampling Bloom Filter-based Unknown tag Detection Protocol (SBF-UDP), whose detection accuracy is tunable by the end users. We present the theoretical analysis to minimize the time and energy costs. SBF-UDP can be tuned to either the time-saving mode or the energy-saving mode, according to the specific requirements. Extensive simulations are conducted to evaluate the performance of the proposed protocol. The experimental results show that SBF-UDP considerably outperforms the previous related protocols in terms of both time-efficiency and energy-efficiency. For example, when 3 or more unknown tags appear in the RFID system with 30 000 known tags, the proposed SBF-UDP is able to successfully report the existence of unknown tags with a confidence more than 99%. While our protocol runs 9 times faster than the fastest existing scheme and reducing the energy consumption by more than 80%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many important food crops produce cyanogenic glucosides as natural defense compounds to protect against herbivory or pathogen attack. It has also been suggested that these nitrogen-based secondary metabolites act as storage reserves of nitrogen. In sorghum, three key genes, CYP79A1, CYP71E1 and UGT85B1, encode two Cytochrome P450s and a glycosyltransferase, respectively, the enzymes essential for synthesis of the cyanogenic glucoside dhurrin. Here, we report the use of targeted induced local lesions in genomes (TILLING) to identify a line with a mutation resulting in a premature stop codon in the N-terminal region of UGT85B1. Plants homozygous for this mutation do not produce dhurrin and are designated tcd2 (totally cyanide deficient 2) mutants. They have reduced vigor, being dwarfed, with poor root development and low fertility. Analysis using liquid chromatography-mass spectrometry (LC-MS) shows that tcd2 mutants accumulate numerous dhurrin pathway-derived metabolites, some of which are similar to those observed in transgenic Arabidopsis expressing the CYP79A1 and CYP71E1 genes. Our results demonstrate that UGT85B1 is essential for formation of dhurrin in sorghum with no co-expressed endogenous UDP-glucosyltransferases able to replace it. The tcd2 mutant suffers from self-intoxication because sorghum does not have a feedback mechanism to inhibit the initial steps of dhurrin biosynthesis when the glucosyltransferase activity required to complete the synthesis of dhurrin is lacking. The LC-MS analyses also revealed the presence of metabolites in the tcd2 mutant which have been suggested to be derived from dhurrin via endogenous pathways for nitrogen recovery, thus indicating which enzymes may be involved in such pathways.