17 resultados para UV-Vis

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dispersion characterization of nanoparticles was carried out using UV/Vis spectroscopy. ZnO and CeO2 nanoparticles of sizes ranging 10 - 250 nm were investigated for slurries having various concentrations. The particles were synthesized by mechanochemical processing, which allows the formation of agglomeration-free nanoparticles. It was found that the UV/Vis spectra were highly sensitive to mean particle sizes and agglomeration states. The results showed that UV/Vis spectroscopy is a highly promising technique for studying nanoparticle dispersions having a wide range of concentrations in various media.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Six new, charge-neutral norbornene-based receptors 1a,1b– 3a,3b were prepared, and their ability to interact with simple anions in DMSO was investigated using 1H NMR and UV/ Vis spectroscopy. Binding of dihydrogenphosphate by the six receptors appeared to be based solely on steric constraints. In contrast, the binding stoichiometry of 3a and 3b to acetate was controlled by subtle electronic factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of zinc oxide (ZnO) nanoparticles as ultraviolet (UV) absorbers for many organic substrates is limited because of the high photocatalytic activity of ZnO. In this study, a facile and efficient technique for the preparation of a hybrid material of silica-coated ZnO nanoparticles was used to reduce the photocatalytic activity of ZnO. Monodispersed ZnO nanopartcles were prepared by wet chemistry and the particle surface was modified by tetraethylorthosilicate to form a silica coating via the Sto¨ ber method. ZnO samples, both before and after the coating process, were investigated by transmission electron microscopy, X-ray diffraction, dynamic light scanning, infrared, and UV-Vis absorption spectroscopy. The effect of the surface modification on the photocatalytic activity of ZnO was studied by monitoring the degradation of Rhodamine B caused by photo-generated free radicals. The results implied that the photo-generation of free-radicals was strongly quenched by the presence of silica on the particle surface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ZnO nanocrystalline powders doped with up to 5 at% manganese were synthesized and their photocatalytic activity was studied. Doped ZnO powders were prepared using a sol-gel process. The crystal structure and grain size of the particles were characterized by X-ray diffractometry and optical properties were studied using UV-Vis spectroscopy. The photoactivity of undoped and doped ZnO nanocrystalline powders was evaluated by monitoring the photo-bleaching of the aqueous solutions of Rhodamine B dye in the presence of ZnO under simulated sunlight. The results showed that up to 3 at% manganese were successfully doped into the nanocrystalline ZnO and that manganese-doping reduced the photocatalytic activity of ZnO.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Prevailing theory predicts that lower levels of intra-clutch variation in host eggs facilitate the detection of brood parasitism. We assessed egg matching using both human vision and UV-VIS spectrophotometry and then followed the nest fate of great reed warblers naturally parasitised by European cuckoos. Rejection was predicted by the following three variables: matching between cuckoo and host eggs on the main chromatic variable defined by principal components analysis of the egg spectra (which has a strong loading in the UV); the number of host eggs in the nest; and human estimates of intra-clutch variation. The first variable is not correlated to human estimates of matching, which do not predict rejection. In line with another recent study, rejection rates were predicted by higher levels of intra-clutch variation in the host eggs, suggesting that higher rather than lower levels of intra-clutch variation can facilitate the discrimination of cuckoo eggs by hosts. We suggest that the importance of intra-clutch variation is context dependent, with intra-clutch variation being important when there is good matching between the host and the cuckoo eggs. Our results also suggest that both spectrometric and human visual assessments of egg matching and intra-clutch variation are prudent: the former provide the best method of estimating reflectance variation, whereas the latter include some assessment of patterns of maculation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is as yet no clear consensus on the function of vivid mouth colours in begging chicks. A major obstacle to our understanding has been that no studies have measured gape colours independently of human colour perception. Here, we present the first study, to our knowledge, to use UV-VIS spectrometry to quantify the gape colour, background nest colour and nest light environment of eight European passerines. Both mouths and the surrounding flanges show striking and previously unreported peaks of reflectance in the ultraviolet, coupled with high long-wavelength reflectance responsible for the human-visible appearance of the gape. High ultraviolet reflectance is likely to have an important effect on the conspicuousness of nestling mouths, since contrast with the nest background is maximal in the ultraviolet. Furthermore, the dual-peak nature of the spectra suggests that gapes are avian non-spectral colours analogous to human purple.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

DNA–didodecyldimethylammonium (DNA–DDDA) electrostatic complex was prepared and characterized through Fourier transformation infrared (FT-IR), 1H NMR and circular dichroism (CD) spectroscopy. When the dye molecule aqueous solutions were used as the subphase, the interaction between three dye molecules, acridine orange (AO), ethidium bromide (EB) and 5,10,15,20-tetrakis(4-N-methylpyridyl)porphine tetra(p-toluenesulfonate) (TMPyP) and the complex at air/solution interface were investigated through the surface pressure–area (π–A) isotherms, Brewster angle microscopy and UV-Vis spectroscopy, respectively. Our investigation indicates that the interaction capabilities of the three dyes to DNA–DDDA complex are different and present an order of TMPyP>AO>EB. For the interaction forms, we believe that TMPyP intercalates into the double helix of DNA, and AO adsorbs onto the surface of the DNA. As for EB, the measured signal is too weak to give a definite interaction form in the present experiment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conducting polymers containing incorporated gold or silver nanoparticles have been synthesized using ionic liquid solutions of gold chloride or silver nitrate. Use of the metal salts as the oxidant for monomers such as pyrrole and terthiophene allows the composites to be formed in one simple step, without the need for templates or capping agents. The incorporated metal nanoparticles are clearly visible by TEM, and the composites have been further analyzed by TGA, CV, UV-Vis, Raman, XPS and scanning TEM coupled with EDS analysis. Utilization of an ionic liquid allows the full oxidizing power of the gold chloride to be accessed, resulting in incorporation of metallic gold into the polymers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Spectroscopic and synthetic methods have been exploited to deduce the mechanism for acidic potassium permanganate chemiluminescence. We have employed electron paramagnetic resonance (EPR) spectroscopy with a continuous flow assembly to monitor the formation of radical intermediates in real time generated from substrate oxidation by manganese(VII). These transient species react with manganese(III) in solution to produce the  previously characterized manganese(II)* emission source. Using UV-vis, EPR, attenuated total reflection (ATR)-FTIR, and chemiluminescence spectroscopies, we have established that there are two distinct enhancement mechanisms that in combination afford a 50-fold increase in emission intensity when the reaction is conducted in the presence of phosphate oligomers. In addition to preventing disproportionation of the manganese(III) precursor, the phosphate oligomers form protective "cagelike” structures around the manganese(II)* emitter, thus preventing nonradiative relaxation pathways.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of new metal (M) dithiolene complexes bearing terthiophene (3, 12, M = Ni; 4, M = Pd; 5, 6, M = Au) and 2,5-bis(para-methoxyphenyl)thiophene units (14, M = Ni; 15, 16, M = Au; 17, M = Pd) have been synthesised in 38–99% yield. The electrochemical properties of the materials have been characterised by cyclic voltammetry and UV-vis spectroelectrochemistry. The nickel complexes possess low oxidation potentials (−0.12 to −0.25 V vs Ag/AgCl) due to the electron-rich dithiolene centres and all complexes display ligand-based redox activity. The terthiophene derivatives have been polymerised by electrochemical oxidation to give stable films with, in the case of poly(3), broad absorption characteristics. Charge transfer materials have been isolated from 14 and 16 with conductivities in the range 9 × 10−6 to 7 × 10−8 S cm−1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A polyacrylonitrile (PAN) nanofiber containing Ag nanoparticles was prepared by an electrospinning technology. To prevent the nanoparticles from coagulating in polymer solutions, an approach of in-situ preparing nanoparticles in PAN solution was used. Diameters of the nanoparticles and nanofiber as well as distribution of the former in the latter were characterized by Transmission electron microscopy. Crystal structure of the nanoparticles was given by X-ray diffraction. Absorption spectrum of the nanocomposites was measured by UV-Vis. Conductivity of the nanocomposites was compared with the pure PAN nanofiber.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The monitoring of lead (II) ions (Pb(2+)) in water is essential for both human health and the environment. Herein, a simple yet innovative biosensor for Pb(2+) detection is presented. The sensor is developed by the self-assembly of gold nanoparticles (GNPs) core-satellite structure using naturally occurring tripeptide glutathione (GSH) as linker. The addition of Pb(2+) caused a red-to-blue color change and the localized surface plasmon resonance (LSPR) band was shifted to ca. 650nm. The limit of detection (LOD) is found to be 47.6nM (9.9ppb) by UV-vis spectroscopy with high selectivity against other heavy metals. This method offers a new strategy for heavy metal detection using functionalized GNPs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel tri-block copolymer poly(oxopentanoate ethyl methacrylate)-block-poly(pyridyl disulfide ethyl acrylate)-block-poly(ethylene glycol acrylate) [poly(OEMA-b-PDEA-b-PEGA)], retaining active keto groups and pyridyl disulfide (PDS) side functionalities, was synthesized as a drug delivery vehicle using reversible addition-fragmentation chain transfer (RAFT) polymerization method. One mimic drug pyridine-2-thione (PT) was introduced into the monomer, PDEA for copolymerization. The other mimic drug O-benzylhydroxylamine (BHA) was conjugated with tri-block copolymer via efficient oxime coupling chemistry, followed by the attachment onto graphene via π-π stacking interaction to obtain a graphene/tri-block copolymer composite. 1H NMR, UV-vis absorption spectroscopy, fluorescence spectroscopy, gel permeation chromatography (GPC), atomic force microscope (AFM) and transmission electron microscope (TEM) were used to verify the successful step-wise preparation of the tri-block copolymer and drug loaded composite. In vitro release behaviors of BHA and PT from graphene/tri-block copolymer composite via dual drug release mechanisms were investigated. BHA can be released under acid environment, while PT will be released in the presence of reducing agents, such as dithiothreitol (DTT) or glutathione (GSH). It can be envisioned that this novel composite could be exploited as a novel intracellular drug delivery system via dual release mechanisms.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Different functions were imparted to ramie fibers through treatment with noble metal nanoparticles including silver and gold nanoparticles. The in situ synthesis of silver and gold nanoparticles was achieved by heating in the presence of ramie fibers in the corresponding solutions of precursors. The unique optical property of synthesized noble metal nanoparticles, i.e., localized surface plasmon resonance, endowed ramie fibers with bright colors. Color strength (K/S) of fibers increased with heating temperature. Silver nanoparticles were obtained in alkaline solution, while acidic condition was conducive to gold nanoparticles. The optical properties of treated ramie fibers were investigated using UV-vis absorption spectroscopy. Scanning electron microscopy (SEM) was employed to observe the morphologies of silver and gold nanoparticles in situ synthesized on fibers. The ramie fibers treated with noble metal nanoparticles showed remarkable catalytic activity for reduction of 4-nitrophenol (4-NP) by sodium borohydride. Moreover, the silver nanoparticle treatment showed significant antibacterial property on ramie fibers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

© 2015 Elsevier Ltd. All rights reserved. Most researches on graphene/polymer composites are focusing on improving the mechanical and electrical properties of polymers at low graphene content instead of paying attention to constructing graphene's macroscopic structures. In current study the homo-telechelic functionalized polyethylene glycols (FPEGs) were tailored with π-orbital-rich groups (namely phenyl, pyrene and di-pyrene) via esterification reactions, which enhanced the interaction between polyethylene glycol (PEG) molecules and chemical reduced graphene oxide (RGO) sheets. The π-π stacking interactions between graphene sheets and π-orbital-rich groups endowed the composite films with enhanced tensile strength and tunable electrical conductivity. The formation of graphene network structure mediated by the FPEGs fillers via π-π stacking non-covalent interactions should account for the experimental results. The experimental investigations were also complemented with theoretical calculation using a density functional theory. Atomic force microscope (AFM), scanning electron microscope (SEM), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), thermal gravimetric analysis (TGA), UV-vis and fluorescence spectroscopy were used to monitor the step-wise preparation of graphene composite films.