48 resultados para Tyrosine

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Granulocyte colony-stimulating factor (G-CSF) is the major regulator of granulopoiesis and acts through binding to its specific receptor (G-CSF-R) on neutrophilic granulocytes. Previous studies of signaling from the 4 G-CSF-R cytoplasmic tyrosine residues used model cell lines that may have idiosyncratic, nonphysiological responses. This study aimed to identify specific signals transmitted by the receptor tyrosine residues in primary myeloid cells. To bypass the presence of endogenous G-CSF-R, a chimeric receptor containing the extracellular domain of the epidermal growth factor receptor in place of the entire extracellular domain of the G-CSF-R was used. A series of chimeric receptors containing tyrosine mutations to phenylalanine, either individually or collectively, was constructed and expressed in primary bone marrow cells from G-CSF-deficient mice. Proliferation and differentiation responses of receptor-expressing bone marrow cells stimulated by epidermal growth factor were measured. An increased 50% effective concentration to stimulus of the receptor Ynull mutant indicated that specific signals from tyrosine residues were required for cell proliferation, particularly at low concentrations of stimulus. Impaired responses by mutant receptors implicated G-CSF-R Y764 in cell proliferation and Y729 in granulocyte differentiation signaling. In addition, different sensitivities to ligand stimulation between mutant receptors indicated that G-CSF-R Y744 and possibly Y729 have an inhibitory role in cell proliferation. STAT activation was not affected by tyrosine mutations, whereas ERK activation appeared to depend, at least in part, on Y764. These observations have suggested novel roles for the G-CSF-R tyrosine residues in primary cells that were not observed previously in studies in cell lines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alzheimer's disease (AD) is characterised by the formation of amyloid deposits composed primarily of the amyloid β-peptide (Aβ). This peptide has been shown to bind redox active metals ions such as copper and iron, leading to the production of reactive oxygen species (ROS) and formation of hydrogen peroxide (H2O2). The generation of H2O2 has been linked with Aβ neurotoxicity and neurodegeneration in AD. Because of the relative stability of a tyrosyl radical, the tyrosine residue (Tyr-10) is believed to be critical to the neurotoxicity of Aβ. This residue has also been shown to be important to Aβ aggregation and amyloid formation. It is possible that the formation of an Aβ tyrosyl radical leads to increased aggregation via the formation of dityrosine as an early aggregation step, which is supported by the identification of dityrosine in amyloid plaque. The role of dityrosine formation in Aβ aggregation and neurotoxicity is as yet undetermined, partly because there are no facile methods for the synthesis of Aβ dimers containing dityrosine. Here we report the use of horseradish peroxidase and H2O2 to dimerise N-acetyl-l-tyrosine ethyl ester and apply the optimised conditions for dityrosine formation to fully unprotected Aβ peptides. We also report a simple fluorescent plate reader method for monitoring Aβ dimerisation via dityrosine formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Metal-catalysed oxidation (MCO) reactions result in the formation of reactive oxygen species (ROS) in biological systems. These ROS cause oxidative stress that contributes to a number of pathological processes leading to a variety of diseases. Tyrosine is one residue that is very susceptible to oxidative modification and the formation of dityrosine (DT) and 3,4-dihydroxyphenylalanine (DOPA) have been widely reported in a number of diseases. However, the mechanisms of MCO of tyrosine in biological systems are poorly understood and require further investigation. In this study we investigated the mechanism of DT and DOPA formation by MCO using N-acetyl tyrosine ethyl ester as a model for tyrosine in proteins and peptides. The results showed that DT formation could be observed upon Cu2+/H2O2 oxidation at pH 7.4. Our results indicate that it is unlikely to be via Fenton chemistry since Cu+/H2O2 oxidative conditions did not lead to the formation of DT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dopamine is a key neurotransmitter of the mesolimbic reward pathway in the human brain, and tyrosine hydroxylase (TH) is the rate-limiting enzyme in dopamine biosynthesis. Consequently, the gene encoding TH is a strong candidate for involvement in the genetic component of addiction. The importance of this gene in nicotine dependence is supported by many studies showing a link between nicotine administration and TH expression. A functional tetranucleotide repeat polymorphism within intron 1 of the TH gene (HUMTH01-VNTR) has been shown to modify tobacco use in two independent Caucasian samples from the USA and Australia. Using information drawn from an eight-wave Australian population-based longitudinal study of adolescent health, we tested the effect of the HUMTH01-VNTR on nicotine dependence. Comparisons were made between dependent smokers and non-dependent smokers. These data provide further support for a protective association between the K4 allele and dependent smoking (odds ratio 0.54, 95% confidence interval 0.28-1.0). No associations were observed at any of three other common TH polymorphisms (rs6356, rs6357 and HUMTH01-PstI). Including these data, three independent studies, two of which use identical phenotypes, have now identified a protective relationship between the K4 allele of the functional HUMTH01-VNTR polymorphism and high-level smoking.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study reports pilot data on an association between tobacco dependence and a five-allele tetranucleotide repeat polymorphism in the first intron of the tyrosine hydroxylase (TH) gene. One hundred and twenty-six Australian adolescents who had participated in the Health in Transition Study (1993–1997), and who showed patterns of either dependent or nondependent smoking across four waves of data collection, consented to participation in the pilot study. The smoking status of those recruited was confirmed using a telephone-administered drug use questionnaire during 2000. Tobacco dependence was defined as smoking more than 6 days per week and more than 10 cigarettes per day during wave 5 (year 2000) and at lfeast one prior wave (n = 58). A second, more stringent phenotype included smoking within an hour of waking (n = 37). The control group comprised adolescents who had used tobacco but had remained low-level social smokers across each wave of data (n = 56). DNA was collected using a mouthwash procedure. Using the more strictly defined tobacco dependence phenotype, and after adjusting for sex, a significant protective association was found between the K4 allele and tobacco dependence (OR 0.27, 95% confidence interval [CI] 0.09, 0.82). No association was found using the liberal criteria of tobacco dependence (OR 0.51, 95% confidence interval [CI] 0.23, 1.2). These preliminary results replicate a previous association between tobacco use and the K4 allele of the TH gene (Lerman et al., 1997). The potential significance of including time to first cigarette in definitions of tobacco dependence and the possible role that these TH variants might play in tobacco dependence are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, is regulated acutely by protein phosphorylation and chronically by protein synthesis. No studies have systematically investigated the phosphorylation of these sites in vivo in response to stressors. We specifically investigated the phosphorylation of TH occurring within the first 24 h in response to the social defeat stress in the rat adrenal, the locus coeruleus, substantia nigra and ventral tegmental area. Five groups were investigated; home cage control (HCC), two groups that underwent social defeat (SD+) which were sacrificed either 10 min or 24 h after the end of the protocol and two groups that were put into the cage without the resident being present (SD−) which were sacrificed at time points identical to the SD+. We found at 10 min there were significant increases in serine 40 and 31 phosphorylation levels in the locus coeruleus in SD+ compared to HCC and increases in serine 40 phosphorylation levels in the substantia nigra in SD+ compared to SD−. We found at 24 h there were significant increases in serine 19 phosphorylation levels in the ventral tegmental area in SD+ compared to HCC and decreases in serine 40 phosphorylation levels in the adrenal in SD+ compared to SD−. These findings suggest that the regulation of TH phosphorylation in different catecholamine-producing cells varies considerably and is dependent on both the nature of the stressor and the time at which the response is analysed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tyrosine kinase inhibitors (TKIs) targeting the epidermal growth factor receptor (EGFR) are well established in treating metastatic pulmonary adenocarcinoma, especially patients with activating EGFR mutations. EGFR mutations are rare in pulmonary squamous cell carcinomas (SCCs). There are conflicting data supporting the efficacy of EGFR-TKIs in advanced lung SCC. We analyzed the impact of EGFR-TKIs on progression-free survival (PFS) and overall survival (OS) in unselected patients with lung SCC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The determination of the amino acids proline, histidine, tyrosine, arginine, phenylalanine and tryptophan using flow injection analysis (FIA) with chemiluminescence detection is described. Proline was the only amino acid to exhibit chemiluminescence with the tris(2,2-bipyridyl)ruthenium(III) reaction at pH 10. While, histidine was found to selectively enhance the reaction of luminol with Mn(II) salts in a basic medium. Acidic potassium permanganate chemiluminescence was able to selectively determine tyrosine at pH 6.75. Low pressure separations using a C18 guard column allowed the simultaneous determination of tyrosine and tryptophan or phenylalanine and tryptophan with acidic potassium permanganate and copper(II)–amino acid–hydrogen peroxide chemiluminescence, respectively. Precision for each method was less than 3.9% (R.S.D.) for five replicates of a standard (1×10−5 M) and the detection limits ranged between 4×10−9 and 7×10−6 M. Preliminary investigations revealed that the methodology developed was able to selectively determine the individual amino acids in an equimolar mixture of the 20 naturally occurring amino acids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aims/hypothesis: Recruitment of the protein c-Cbl to the insulin receptor (IR) and its tyrosine phosphorylation via a pathway that is independent from phosphatidylinositol 3prime-kinase is necessary for insulin-stimulated GLUT4 translocation in 3T3-L1 adipocytes. The activation of this pathway by insulin or exercise has yet to be reported in skeletal muscle. Methods: Lean and obese Zucker rats were randomly assigned to one of three treatment groups: (i) control, (ii) insulin-stimulated or (iii) acute, exhaustive exercise. Hind limb skeletal muscle was removed and the phosphorylation state of IR, Akt and c-Cbl measured.  Results:   Insulin receptor phosphorylation was increased 12-fold after insulin stimulation (p<0.0001) in lean rats and threefold in obese rats. Acute exercise had no effect on IR tyrosine phosphorylation. Similar results were found for serine phosphorylation of Akt. Exercise did not alter c-Cbl tyrosine phosphorylation in skeletal muscle of lean or obese rats. However, in contrast to previous studies in adipocytes, c-Cbl tyrosine phosphorylation was reduced after insulin treatment (p<0.001). Conclusions/interpretation: We also found that c-Cbl associating protein expression is relatively low in skeletal muscle of Zucker rats compared to 3T3-L1 adipocytes and this could account for the reduced c-Cbl tyrosine phosphorylation after insulin treatment. Interestingly, basal levels of c-Cbl tyrosine phosphorylation were higher in skeletal muscle from insulin-resistant Zucker rats (p<0.05), but the physiological relevance is not clear. We conclude that the regulation of c-Cbl phosphorylation in skeletal muscle differs from that previously reported in adipocytes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exercise increases skeletal muscle insulin action but the underlying mechanisms mediating this are equivocal. In mouse skeletal muscle, prior exercise enhances insulin-stimulated insulin receptor substrate-2 (IRS-2) signaling (Diabetes 2002;51:479-83), but it is unknown if this also occurs in humans. Hyperinsulinemic-euglycemic clamps were performed on 7 untrained males at rest and immediately after 60 minutes of cycling exercise at ~75% Vo2peak. Muscle biopsies were obtained at basal, immediately after exercise, and at 30 and 120 minutes of hyperinsulinemia. Insulin infusion increased (P < .05) insulin receptor tyrosine phosphorylation similarly in both the rest and exercise trials. Under resting conditions, insulin infusion resulted in a small, but non–statistically significant increase in IRS-2–associated phosphatidylinositol 3 (PI 3)–kinase activity over basal levels. Exercise per se decreased (P < .05) IRS-2–associated PI 3–kinase activity. After exercise, insulin-stimulated IRS-2–associated PI 3–kinase activity tended to increase at 30 minutes and further increased (P < .05) at 120 minutes when compared with the resting trial. Insulin increased (P < .05) Akt Ser473 and GSK-3α/β Ser21/Ser9 phosphorylation in both trials, with the response tending to be higher in the exercise trial. In conclusion, in the immediate period after an acute bout of exercise, insulin-stimulated IRS-2 signaling is enhanced in human skeletal muscle.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective
Constitutive activation of Stat5 has been observed in a variety of malignancies, particularly myeloid leukemias. To directly investigate the in vivo consequences of Stat5 perturbation, we expressed constitutively active forms in zebrafish.
Methods
We generated mutants of the zebrafish stat5.1 protein (N646H, H298R/N714F, and N714F) based on previously identified constitutively active mutants of murine Stat5a. The in vitro properties of these mutants were determined using phosphorylation-specific antibodies and luciferase reporter assays, and their in vivo effects were analyzed through microinjection of zebrafish embryos.
Results
Two of these stat5.1 mutants (N646H and H298R/N714F) showed increased tyrosine phosphorylation and transactivation activity compared to the wild-type protein. Expression of either mutant led to a range of hematological perturbations, which were more pronounced for the H298R/N714F mutant. Interestingly, expression of wild-type also produced generally similar phenotypes. Further analysis showed that expression of the H298R/N714F mutant led to increased numbers of early and late myeloid cells, erythrocytes, and B cells. Some nonhematopoietic developmental perturbations were also observed, but these were equally prominent with wild-type or mutant forms.
Conclusion
These data implicate Stat5 activity as a direct critical regulator of hematological cell proliferation, suggesting a causal role for constitutively-active Stat5 in the etiology of hematological malignancies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The period immediately after exercise is characterized by enhanced insulin action in skeletal muscle, and on the molecular level, by a marked increase in insulin-stimulated, phosphotyrosine-associated phosphatidylinositol (PI) 3-kinase activity. Because the increase in PI 3-kinase activity cannot be explained by increased insulin receptor substrate (IRS)-1 signaling, the present study examined whether this effect is mediated by enhanced IRS-2 signaling. In wild-type (WT) mice, insulin increased IRS-2 tyrosine phosphorylation (2.5-fold) and IRS-2-associated PI 3-kinase activity (3-fold). Treadmill exercise, per se, had no effect on IRS-2 signaling, but in the period immediately after exercise, there was a further increase in insulin-stimulated IRS-2 tyrosine phosphorylation (3.5-fold) and IRS-2-associated PI 3-kinase activity (5-fold). In IRS-2-deficient (IRS-2-/-) mice, the increase in insulin-stimulated, phosphotyrosine-associated PI 3-kinase activity was attenuated as compared with WT mice. However, in IRS-2-/- mice, the insulin-stimulated, phosphotyrosine-associated PI 3-kinase response after exercise was slightly higher than the insulin-stimulated response alone. In conclusion, IRS-2 tyrosine phosphorylation and associated PI 3-kinase activity are markedly enhanced by insulin in the immediate period after exercise. IRS-2 signaling can partially account for the increase in insulin-stimulated phosphotyrosine-associated PI 3-kinase activity after exercise.