8 resultados para Two-Photon absorptions

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biofunctional nanorods are developed to specifically target cancer cells. The cervical cancer cells, HeLa cells, are labeled by these biofunctional gold nanorods. Those cancer cells can be detected by a multi-photon-excited photoluminescence endomicroscope, which proves that the cancers can be in vivo diagnosed by using biofunctional gold nanorods with nonlinear endomicroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transferrin-conjugated gold nanorods were used for targeting, two-photon imaging and photothermal therapy of cancer cells. The presence of nanorods significantly reduced the laser power effective for therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lasting glow: Under femtosecond laser irradiation, graphene oxide nanoparticles (GONs) give strong two-photon luminescence (TPL; see picture). The presence of GONs also induces microbubbling, which causes cell death at an order of magnitude lower laser power than when cells are not labeled. The results show that GONs can be used for TPL-based imaging and photothermal cancer therapy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-photon initiated photo-isomerization of an azobenzene moiety adsorbed on silver nanoparticles (Ag NPs) is demonstrated. The azobenzene is linked to a materials-binding peptide that brings it into intimate contact with the Ag NP surface, producing a dramatic enhancement of its two-photon absorbance. An integrated modeling approach, combining advanced conformational sampling with Quantum Mechanics/Capacitance Molecular Mechanics and response theory, shows that charge transfer and image charges in the Ag NP generate local fields that enhance two-photon absorption of the cis isomer, but not the trans isomer, of adsorbed molecules. Moreover, dramatic local field enhancement is expected near the localized surface plasmon resonance (LSPR) wavelength, and the LSPR band of the Ag NPs overlaps the azobenzene absorbance that triggers cis to trans switching. As a result, the Ag NPs enable two-photon initiated cis to trans isomerization, but not trans to cis isomerization. Confocal anti-Stokes fluorescence imaging shows that this effect is not due to local heating, while the quadratic dependence of switching rate on laser intensity is consistent with a two-photon process. Highly localized two-photon initiated switching could allow local manipulation near the focal point of a laser within a 3D nanoparticle assembly, which cannot be achieved using linear optical processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Near-infrared laser-based microsurgery is promising for noninvasive cancer treatment. To make it a safe technique, a therapeutic process should be controllable and energy efficient, which requires the cancer cells to be identifiable and observable. In this work, for the first time we use a miniaturized nonlinear optical endomicroscope to achieve microtreatment of cancer cells labeled with gold nanorods. Due to the high two-photon-excited photoluminescence of gold nanorods, HeLa cells inside a tissue phantom up to 250 μm deep can be imaged by the nonlinear optical endomicroscope. This facilitates microsurgery of selected cancer cells by inducing instant damage through the necrosis process, or by stopping cell proliferation through the apoptosis process. The results indicate that a combination of nonlinear endomicroscopy with gold nanoparticles is potentially viable for minimally invasive cancer treatment.