26 resultados para Transgenic beans

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spi1 (pu.1) gene has recently been identified as a useful marker of early myeloid cells in zebrafish. To enhance the versatility of this organism as a model for studying myeloid development, the promoter of this gene has been isolated and characterized. Transient transgenesis revealed that a 5.3 kilobase promoter fragment immediately upstream of the spi1 coding sequence was sufficient to drive expression of enhanced green fluorescent protein (EGFP) in injected embryos in a manner that largely recapitulated the native spi1 gene expression pattern. This fragment was successfully used to produce a germ line transgenic line of zebrafish with EGFP-expressing myeloid cells. These TG(spi1:EGFP)pA301 transgenic zebrafish represent a valuable tool for further studies of myeloid development and its perturbation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the effects of riluzole (Ril), creatine (Cr) and a combination of these treatments on the onset and progression of clinical signs and neuropathology in an animal model of familial amyotrophic lateral sclerosis, the G93A transgenic mouse (n=13–17 per group). The onset of clinical signs was delayed (P<0.05) by about 12 days in all treatment groups compared with control; however, no differences occurred between treatments. All animals were killed at 199 days of age. At the end of the experimental period the severity of clinical signs was less (P<0.05) with all treatments compared with control. Again no differences between treatments were observed. The treatments had no effect on the number of neurons in ventral horns of the lumbar region of the spinal cord. Transgenic mice ingesting Cr displayed elevated (P<0.05) total Cr levels in cerebral hemispheres (5%) and spinal cord (8%), but not skeletal muscles. These data demonstrate that treatment with Ril and Cr were both effective in delaying disease onset and clinical disability. To the age of killing, no additional benefit was conferred by co-administration of Ril and Cr.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The final steps in the absorption and excretion of copper at the molecular level are accomplished by 2 closely related proteins that catalyze the ATP-dependent transport of copper across the plasma membrane. These proteins, ATP7A and ATP7B, are encoded by the genes affected in human genetic copper-transport disorders, namely, Menkes and Wilson diseases. We studied the effect of copper perfusion of an isolated segment of the jejunum of ATP7A transgenic mice on the intracellular distribution of ATP7A by immunofluorescence of frozen sections. Our results indicate that ATP7A is retained in the trans-Golgi network under copper-limiting conditions, but relocalized to a vesicular compartment adjacent to the basolateral membrane in intestines perfused with copper. The findings support the hypothesis that the basolateral transport of copper from the enterocyte into the portal blood may involve ATP7A pumping copper into a vesicular compartment followed by exocytosis to release the copper, rather than direct pumping of copper across the basolateral membrane.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims/hypothesis: To study the secondary consequences of impaired suppression of endogenous glucose production (EGP) we have created a transgenic rat overexpressing the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK) in the kidney. The aim of this study was to determine whether peripheral insulin resistance develops in these transgenic rats.
Methods: Whole body rate of glucose disappearance (Rd) and endogenous glucose production were measured basally and during a euglycaemic/hyperinsulinaemic clamp in phosphoenolpyruvate carboxykinase transgenic and control rats using [6-3H]-glucose. Glucose uptake into individual tissues was measured in vivo using 2-[1-14C]-deoxyglucose.
Results: Phosphoenolpyruvate carboxykinase transgenic rats were heavier and had increased gonadal and infrarenal fat pad weights. Under basal conditions, endogenous glucose production was similar in phosphoenolpyruvate carboxykinase transgenic and control rats (37.4±1.1 vs 34.6±2.6 µmol/kg/min). Moderate hyperinsulinaemia (810 pmol/l) completely suppressed EGP in control rats (–0.6±5.5 µmol/kg/min, p<0.05) while there was no suppression in phosphoenolpyruvate carboxykinase rats (45.2±7.9 µmol/kg/min). Basal Rd was comparable between PEPCK transgenic and control rats (37.4±1.1 vs 34.6±2.6 µmol/kg/min) but under insulin-stimulated conditions the increase in Rd was greater in control compared to phosphoenolpyruvate carboxykinase transgenic rats indicative of insulin resistance (73.4±11.2 vs 112.0±8.0 µmol/kg/min, p<0.05). Basal glucose uptake was reduced in white and brown adipose tissue, heart and soleus while insulin-stimulated transport was reduced in white and brown adipose tissue, white quadriceps, white gastrocnemius and soleus in phosphoenolpyruvate carboxykinase transgenic compared to control rats. The impairment in both white and brown adipose tissue glucose uptake in phosphoenolpyruvate carboxykinase transgenic rats was associated with a decrease in GLUT4 protein content. In contrast, muscle GLUT4 protein, triglyceride and long-chain acylCoA levels were comparable between PEPCK transgenic and control rats.
Conclusions/interpretation: A primary defect in suppression of EGP caused adipose tissue and muscle insulin resistance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Both copper transporting ATPases, ATP7A and ATP7B, are expressed in mammary epithelial cells but their role in copper delivery to milk has not been clarified. We investigated the role of ATP7A in delivery of copper to milk using transgenic mice that over-express human ATP7A. In mammary gland of transgenic mice, human ATP7A protein was 10- to 20-fold higher than in control mice, and was localized to the basolateral membrane of mammary epithelial cells in lactating mice. The copper concentration in the mammary gland of transgenic dams and stomach contents of transgenic pups was significantly reduced compared to non-transgenic mice. The mRNA levels of endogenous Atp7a, Atp7b, and Ctr1 copper transporters in the mammary gland were not altered by the expression of the ATP7A transgene, and the protein levels of Atp7b and ceruloplasmin were similar in transgenic and non-transgenic mice. These data suggest that ATP7A plays a role in removing excess copper from the mammary epithelial cells rather than supplying copper to milk.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims/hypothesis Islet transplantation is a potential cure for diabetes; however, rates of graft failure remain high. The aim of the present study was to determine whether amyloid deposition is associated with reduced beta cell volume in islet grafts and the recurrence of hyperglycaemia following islet transplantation.

Methods We transplanted a streptozotocin-induced mouse model of diabetes with 100 islets from human IAPP (which encodes islet amyloid polypeptide) transgenic mice that have the propensity to form islet amyloid (n = 8–12) or from non-transgenic mice that do not develop amyloid (n = 6–10) in sets of studies that lasted 1 or 6 weeks.

Results Plasma glucose levels before and for 1 week after transplantation were similar in mice that received transgenic or non-transgenic islets, and at that time amyloid was detected in all transgenic grafts and, as expected, in none of the non-transgenic grafts. However, over the 6 weeks following transplantation, plasma glucose levels increased in transgenic but remained stable in non-transgenic islet graft recipients (p < 0.05). At 6 weeks, amyloid was present in 92% of the transgenic grafts and in none of the non-transgenic grafts. Beta cell volume was reduced by 30% (p < 0.05), beta cell apoptosis was twofold higher (p < 0.05), and beta cell replication was reduced by 50% (p < 0.001) in transgenic vs non-transgenic grafts. In summary, amyloid deposition in islet grafts occurs prior to the recurrence of hyperglycaemia and its accumulation over time is associated with beta cell loss.

Conclusions/interpretation Islet amyloid formation may explain, in part, the non-immune loss of beta cells and recurrence of hyperglycaemia following clinical islet transplantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims/hypothesis Supraphysiological levels of the amyloidogenic peptide human islet amyloid polypeptide have been associated with beta cell endoplasmic reticulum (ER) stress. However, in human type 2 diabetes, levels of human IAPP are equivalent or decreased relative to matched controls. Thus, we sought to investigate whether ER stress is induced during amyloidogenesis at physiological levels of human IAPP.

Methods Islets from human IAPP transgenic mice that develop amyloid, and non-transgenic mice that do not, were cultured for up to 7 days in 11.1, 16.7 and 33.3 mmol/l glucose. Pancreases from human IAPP transgenic and non-transgenic mice and humans with or without type 2 diabetes were also evaluated. Amyloid formation was determined histologically. ER stress was determined in islets by quantifying mRNA levels of Bip, Atf4 and Chop (also known as Ddit3) and alternate splicing of Xbp1 mRNA, or in pancreases by immunostaining for immunoglobulin heavy chain-binding protein (BIP), C/EBP homologous protein (CHOP) and X-box binding protein 1 (XBP1).

Results Amyloid formation in human IAPP transgenic islets was associated with reduced beta cell area in a glucose- and time-dependent manner. However, amyloid formation was not associated with significant increases in expression of ER stress markers under any culture condition. Thapsigargin treatment, a positive control, did result in significant ER stress. Amyloid formation in vivo in pancreas samples from human IAPP transgenic mice or humans was not associated with upregulation of ER stress markers.

Conclusions/interpretation Our data suggest that ER stress is not an obligatory pathway mediating the toxic effects of amyloid formation at physiological levels of human IAPP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims/hypothesis In type 2 diabetes, aggregation of islet amyloid polypeptide (IAPP) into amyloid is associated with beta cell loss. As IAPP is co-secreted with insulin, we hypothesised that IAPP secretion is necessary for amyloid formation and that treatments that increase insulin (and IAPP) secretion would thereby increase amyloid formation and toxicity. We also hypothesised that the unique properties of the glucagon-like peptide-1 (GLP-1) receptor agonist exendin-4 to maintain or increase beta cell mass would offset the amyloid-induced toxicity.

Methods Islets from amyloid-forming human IAPP transgenic and control non-transgenic mice were cultured for 48 h in 16.7 mmol/l glucose alone (control) or with exendin-4, potassium chloride (KCl), diazoxide or somatostatin. Human IAPP and insulin release, amyloid deposition, beta cell area/islet area, apoptosis and AKT phosphorylation levels were determined.

Results In control human IAPP transgenic islets, amyloid formation was associated with increased beta cell apoptosis and beta cell loss. Increasing human IAPP release with exendin-4 or KCl increased amyloid deposition. However, while KCl further increased beta cell apoptosis and beta cell loss, exendin-4 did not. Conversely, decreasing human IAPP release with diazoxide or somatostatin limited amyloid formation and its toxic effects. Treatment with exendin-4 was associated with an increase in AKT phosphorylation compared with control and KCl-treated islets.

Conclusions/interpretation IAPP release is necessary for islet amyloid formation and its toxic effects. Thus, use of insulin secretagogues to treat type 2 diabetes may result in increased islet amyloidogenesis and beta cell death. However, the AKT-associated anti-apoptotic effects of GLP-1 receptor agonists such as exendin-4 may limit the toxic effects of increased islet amyloid.