81 resultados para Toughness.

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 2/2 twill weave fabric carbon fibre reinforced epoxy matrix composite MTM56/CF0300 was used to investigate the effect of different manufacturing processes on the interlaminar fracture toughness. Double cantilever beam tests were performed on composites manufactured by hot press, autoclave and 'Quickstep' processes. The 'Quickstep' process was recently developed in Perth, Western Australia for the manufacture of advanced composite components. The values of the mode I critical strain energy release rate (G1d were compared and the results showed that the composite specimens manufactured by the autoclave and the 'Quickstep' process had much higher interlaminar fracture toughness than the specimen produced by the hot press. When compared to specimens manufactured by the hot press, the interlaminar fracture toughness values of the Quickstep and autoclave samples were 38% and 49% higher respectively. The 'Quickstep' process produced composite specimens that had comparable interlaminar fracture toughness to autoclave manufactured composites. Scanning electron microscopy (SEM) was employed to study the topography of the mode I interlaminar fracture surface and dynamic mechanical analysis (DMA) was performed to investigate the fibre/matrix interphase. SEM micrography and DMA spectra indicated that autoclave and 'Quickstep' produced composites with stronger fibre/matrix adhesion than hot press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A finite element (FE) model is developed to investigate mode I delamination toughness of z-pin reinforced composite laminates. The z-pin pullout process is simulated by the deformation of a set of non-linear springs. A critical crack opening displacement (COD) criterion is used to simulate crack growth in a double-cantilever-beam (DCB) made of z-pinned laminates. The toughness of the structure is quantified by the energy release rate, which is calculated using the contour integral method. The FE model is verified for both unpinned and z-pinned laminates. Predicted loading forces from FE analysis are compared to available test data. Good agreement is achieved. Our numerical results indicate that z-pins can greatly increase the mode I delamination toughness of the composite laminates. The influence of design parameters on the toughness enhancement of z-pinned laminates is also investigated, which provides important information to optimise and improve the z-pinning technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode II delamination toughness of z-pin reinforced composite laminates is investigated using finite element (FE) method. The z-pin pullout process is simulated by the deformation and breakage of non-linear springs. A critical shear stress criterion based on linear elastic fracture mechanics is used to simulate crack growth in an end-notched-flexure (ENF) beam made of z-pinned laminates. The mode II toughness is quantified by the potential energy release rate calculated using the contour integral method. This FE model is verified for an unpinned ENF composite beam. Numerical results obtained indicate that z-pins can significantly increase the mode II delamination toughness of composite laminate. The effects of design variables on the toughness enhancement of z-pinned laminates are also studied, which provides an important technological base and useful data to optimize and improve the z-pinning technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An Al6061-20%Al2O3 powder metallurgy (PM) metal matrix composite (MMC) with a strongly clustered particle distribution is subjected to equal channel angular pressing (ECAP) at a temperature of 370 °C. The evolution of the homogeneity of the particle distribution in the material during ECAP is investigated by the quadrat method. The model proposed by Tan and Zhang [Mater Sci Eng 1998;244:80] for estimating the critical particle size which is required for a homogeneous particle distribution in PM MMCs is extended to the case of a combination of extrusion and ECAP. The applicability of the model to predict a homogeneity of the particle distribution after extrusion and ECAP is discussed. It is shown that ECAP leads to an increase of the  uniformity of the particle distribution and the fracture toughness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shape memory alloys (SMAs) exhibit two very important properties: shape memory phenomenon and superelastic deformation due to intrinsic thermoelastic martensitic transformation. To fully exploit the potential of SMAs in developing functional structures or smart structures in mechanical and biomechanical engineering, it is important to understand and quantify the failure mechanisms of SMAs. This paper presents a theoretical study of the effect of phase-transformation-induced volume contraction on the fracture properties of superelastic SMAs. A simple model is employed to account for the forward and reverse phase transformation with pure volume change, which is then applied to numerically study the transformation field near the tip of a tensile crack. The results reveal that during steady-state crack propagation, the transformation zone extends ahead of the crack tip due to forward transformation while partial reverse transformation occurs in the wake. Furthermore, as a result of the volume contraction associated with the austenite-to-martensite transformation, the induced stress-intensity factor is positive. This is in stark contrast with the negative stress-intensity factor achieved in zirconia ceramics, which undergoes volume expansion during phase transformation. The reverse transformation has been found to have a negligible effect on the induced stress-intensity factor. An important implication of the present results is that the phase transformation with volume contraction in SMAs tends to reduce their fracture resistance and increase the brittleness.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isonitrogenous amounts of two protein sources differing in rumen degradation rate and in lipid composition were fed to sheep with or without a rapidly fermentable cereal grain. The effects on intake, carcass leanness, and muscle fatty acid (FA) composition were examined. Thirty-eight crossbred wether lambs (9 mo, 35 to 48 kg) were allocated by stratified randomization to six treatment groups: 1) basal diet of alfalfa hay:oat hay (20:80) ad libitum = basal; 2) basal + lupin (358 g DM/d) = lupin; 3) basal + fish meal (168 g DM/d) = fish meal; 4) basal + barley (358 g DM/d) = barley; 5) basal + barley + lupin (179 + 179 g DM/d) = barley/lupin; or 6) basal + barley + fish meal (179 + 84 g DM/d) = barley/ fish meal. Lambs were fed individually. Dietary treatments were imposed for 8 wk, and the supplements were offered at 2-d intervals. Daily feed intake and weekly BW of lambs were recorded. At the end of the feeding period lambs were slaughtered after an overnight fast. Hot carcass weight (HCW) and fat depth (GR; total fat and muscle tissue depth at 12th rib, 110 mm from midline) were recorded. At 24 h postmortem samples of longissimus thoracis (LT) and longissimus lumborum (LL) muscles were taken from chilled (4 deg C) carcasses for the assessment of FA composition and meat tenderness, respectively. Lambs fed lupin or fish meal with or without barley had heavier slaughter weights (P < 0.004) and HCW (P < 0.001) than lambs fed basal or barley when initial BW was included as a covariate. The lupin diet also resulted in heavier carcasses (P < 0.05) than the fish meal or barley/fish meal diets. With GR as an indicator, fish meal and barley/ fish meal diets produced leaner carcasses (P < 0.01) than lupin and barley/lupin lambs. Long-chain n-3 FA content [20:5n-3 (P < 0.001), 22:5n-3 (P < 0.003), and 22:6n-3 (P < 0.001)] in the LT muscle were substantially higher with the fish meal and barley/fish meal diets, whereas muscle total n-6 FA was increased (P < 0.003) by lupin and barley/lupin compared with all other diets. Thus, increased muscle long-chain n-3 FA content occurred without an increase in fatness measured as GR, whereas increased muscle n-6 FA content was associated with an increase in carcass fatness. Under these circumstances, a reduction in carcass fatness had no effect on meat tenderness measured as Warner-Bratzler shear force.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quickstep ™ is a fluid filled floating mould technology which was recently developed by an Australian company of the same name. The Quickstep and conventional autoclave manufacture of composites were compared by investigating the mode I interlaminar fracture toughness and nanocreep propeties of HexPly914 carbon epoxy composites. It was found that composites cured using the Quickstep technology had significantly higher fracture toughness (1.8 times) than the composites cured via autoclave for this system. DMTA (dynamic mechanical thermal analysis) results showed a higher Tg (glass transition temperature) for the material manufactured by the Quickstep than that cured by the autoclave. FTIR (Fourier transform infrared spectroscopy) spectra did not indicate any difference in cure chemistry between the two processes. Nanocreep experiments were performed to explore the viscoelastic properties of the epoxy matrix of composites. The KelvinVoigt three-element model was applied to analyse the indentation creep behaviour of both composites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fracture behavior of titanium open foam is characterized and the R-curves of crack propagation from pre-cracks are measured. The crack growth has been optically observed, the measured initiation toughness, JIC, has been analyzed and the effect of material morphology on the JIC is discussed. The fracture toughness was found to be dependent on the expanding crack bridging zone at the back of the crack tip. The compact tension specimens also have some plastic collapse along the ligaments and it has shown that the titanium foam with a higher relative density is tougher. The non-uniform stressing within the plastic zone at the crack tip and the plastic collapse of cell topology behind the tip was found to be the primary cause of the R-curve behavior in low relative density titanium foams.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eighteen (10 female and 8 male) recently retired top world-ranked Australian professional tennis players responded to a questionnaire that was developed to address future directions by mental toughness researchers. A series of inductive content analyses was conducted to analyze the qualitative data obtained from participants’ responses. These analyses revealed that mental toughness is a most sought-after dynamic attribute that encompasses a range of abilities (e.g., focus, work ethic) to consistently perform well under pressure. Further, mental toughness is thought to be ‘taught’ and/or ‘acquired’ over many years and can be influenced by factors that include injury, changes in a player’s technique and match results. Examples of mentally tough players were cited and reasons given as to their selection as outstanding mentally tough competitors. Sport psychologists, coaches, parents and other mentors were identified as significant members of a support team to guide and equip players to be mentally tough competitors. This study’s value to the tennis community includes practical benefits from gaining a fuller understanding of what is arguably one of the most important psychological skills in achieving excellence and enjoyment in tennis, namely mental toughness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the high strength and stiffness of polymer nanocomposites, they usually display lower deformability and toughness relative to their matrices. Spider silk features exceptionally high stiffness and toughness via the hierarchical architecture based on hydrogen-bond (H-bond) assembly. Inspired by this intriguing phenomenon, we here exploit melamine (MA) to reinforce poly(vinyl alcohol) (PVA) via H-bond self-assembly at a molecular level. Our results have shown that due to the formation of physical cross-link network based on H-bond assembly between MA and PVA, yield strength, Young’s modulus, extensibility, and toughness of PVA are improved by 22, 25, 144, and 200% with 1.0 wt % MA, respectively. Moreover, presence of MA can enhance the thermal stability of PVA to a great extent, even exceeding some nanofillers (e.g., graphene). This work provides a facile method to improve the mechanical properties of polymers via H-bond self-assembly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A study on the effect of material and fracture properties of phenolic composites cured with reduced thermal cycle times. These reductions were achieved using various techniques. The work highlights significant reductions in manufacturing times are possible for this group of materials and conveniently can also lead to improved properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an increasing demand for high performance composites with enhanced mechanical and electrical properties. Carbon nanofibres offer a promising solution but their effectiveness has been limited by difficulty in achieving directional alignment. Here we report the use of an alternating current (AC) electric field to align carbon nanofibres in an epoxy. During the cure process of an epoxy resin, carbon nanofibres (CNFs) are observed to rotate and align with the applied electric field, forming a chain-like structure. The fracture energies of the resultant epoxy nanocomposites containing different concentrations of CNFs (up to 1.6wt%) are measured using double cantilever beam specimens. The results show that the addition of 1.6wt% of aligned CNFs increases the electrical conductivity of such nanocomposites by about seven orders of magnitudes to 10<sup>-2</sup>S/m and increases the fracture energy, G<inf>Ic</inf>, by about 1600% from 134 to 2345J/m<sup>2</sup>. A modelling technique is presented to quantify this major increase in the fracture energy with aligned CNFs. The results of this research open up new opportunities to create multi-scale composites with greatly enhanced multifunctional properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microstructures and Charpy impact properties have been examined in two microalloyed steels following heat treatments to simulate weld heat affected zone (HAZ) structures over a range of heat input conditions, characterised by the cooling time from 800 to 500°C (Δt8/5). The base materials were low carbon structural steel plates microalloyed with vanadium and nitrogen (V-N) and niobium (Nb), respectively. The toughnesses of the HAZs displayed remarkably different behaviours as shown by their impact transition temperatures. For the V-N steel, the toughness improved with increasingly rapid cooling (low heat input conditions) whereas the Nb steel showed an opposite trend. Some of this behaviour could be explained by the presence of coarse ferrite grains in the slowly cooled V-N steel. However, other conditions where all the structures were bainitic and rather similar in optical micrographs gave widely different toughness values. The recently developed method of five dimensional boundary analysis based on electron backscattering diffraction has been applied to these cases for the first time. This showed that the lath boundaries in the bainite were predominantly on {1 1 0} planes of the ferrite and that the average spacing of these boundaries varied depending on steel composition and cooling rate. Since {1 1 0} is also the slip plane in ferrite, it is considered that close spacing between the lath boundaries inhibits general plasticity at stress concentrations and favours initiation of fracture. The differences between the two steels are believed to be due to their transformation behaviours on cooling where precipitation of vanadium nitride in austenite accelerates ferrite formation and raises the temperature of the phase transformation in V-N steels.