24 resultados para Time of flight mass spectrometry

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used to investigate correlations between the molecular changes and postcuring reaction on the surface of a diglycidyl ether of bisphenol A and diglycidylether of bisphenol F based epoxy resin cured with two different amine-based hardeners. The aim of this work was to present a proof of concept that ToF-SIMS has the ability to provide information regarding the reaction steps, path, and mechanism for organic reactions in general and for epoxy resin curing and postcuring reactions in particular. Contact-angle measurements were taken for the cured and postcured epoxy resins to correlate changes in the surface energy with the molecular structure of the surface. Principal components analysis (PCA) of the ToFSIMS positive spectra explained the variance in the molecular information, which was related to the resin curing and postcuring reactions with different hardeners and to the surface energy values. The first principal component captured information related to the chemical phenomena of the curing reaction path, branching, and network density based on changes in the relative ion density of the aliphatic hydrocarbon and the C7H7O+ positive ions. The second principal component captured information related to the difference in the surface energy, which was correlated to the difference in the relative intensity of the CxHyNz+ ions of the samples. PCA of the negative spectra provided insight into the extent of consumption of the hardener molecules in the curing and postcuring reactions of both systems based on the relative ion intensity of the nitrogen-containing negative ions and showed molecular correlations with the sample surface energy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time-of-flight secondary ion mass spectrometry and principal components analysis were used in real time to monitor the progress of curing reactions on the surface of a diglycidyl ether of bisphenol A (DGEBA) and diglycidyl ether of bisphenol F (DGEBF) epoxy resin blend reacted with the diamine hardener isophorone diamine at different time intervals. Molecular ions in the mass spectra that characterized the curing reactions steps, including blocking, coupling, branching, and crosslinking, were identified. The aliphatic hydrocarbon ions were correlated to the curing reaction rate, and this indicated that coupling and branching occurred much faster than the blocking and crosslinking curing reactions steps. The total conversion of the coupling and branching reaction steps were followed on the basis of changes with time in the relative ion intensity of molecular ions assigned to the DGEBA/DGEBF, aliphatic hydrocarbon, epoxide, and aromatic ring structures. Indicative measures of crosslinking density were monitored through the observation of changes in the ratio of the relative intensities of the aliphatic hydrocarbon and hydroxyl molecular ions over time. The curing reaction conversion was established by the observation of the changes in the relative ion intensity of the molecular ions that were related to the DGEBA/ DGEBF molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein mass spectrometry (MS) pattern recognition has recently emerged as a new method for cancer diagnosis. Unfortunately, classification performance may degrade owing to the enormously high dimensionality of the data. This paper investigates the use of Random Projection in protein MS data dimensionality reduction. The effectiveness of Random Projection (RP) is analyzed and compared against Principal Component Analysis (PCA) by using three classification algorithms, namely Support Vector Machine, Feed-forward Neural Networks and K-Nearest Neighbour. Three real-world cancer data sets are employed to evaluate the performances of RP and PCA. Through the investigations, RP method demonstrated better or at least comparable classification performance as PCA if the dimensionality of the projection matrix is sufficiently large. This paper also explores the use of RP as a pre-processing step prior to PCA. The results show that without sacrificing classification accuracy, performing RP prior to PCA significantly improves the computational time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-performance liquid chromatography (HPLC) with tris(2,2-bipyridyl)ruthenium(II) chemiluminescence detection methodology is reported for the determination of the atypical antipsychotic drug quetiapine and the observation of its major active and inactive metabolites in human urine and serum. The method uses a monolithic chromatographic column allowing high flow rates of 3mL min−1 enabling rapid quantification. Flow injection analysis (FIA) with tris(2,2-bipyridyl)ruthenium(II) chemiluminescence detection and HPLC time of flight mass spectrometry (TOF-MS) were used for the determination of quetiapine in a pharmaceutical preparation to establish its suitability as a calibration standard. The limit of detection achieved with FIA was 2×10−11 mol L−1 in simple aqueous solution. The limits of detection achieved with HPLC were 7×10−8 and 2×10−10 mol L−1 in urine and serum, respectively. The calibration range for FIA was between 5×10−9 and 1×10−6 mol L−1. The calibration ranges for HPLC were between 1×10−7–1×10−4 and 1×10−8–1×10−4 mol L−1 in urine and serum, respectively. The quetiapine concentrations in patient samples were found to be 3×10−6 mol L−1 in urine and 7×10−7 mol L−1 in serum. Without the need for preconcentration, the HPLC detection limits compared favourably with those in previously published methodologies. The metabolites were identified using HPLC-TOF-MS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide and the third highest cause of cancer-related mortality in humans. Epigallocatechin-3-gallate (EGCG) has been shown to inhibit the metastatic activity of certain cancer cells. The aim of this study was to determine the effects and molecular mechanism(s) of action of EGCG in human HCC cells. A migration and invasion assay for the metastatic behavior of HCCLM6 cells was performed. The anti-metastatic effects of EGCG were investigated by RT-PCR and gelatin zymography. A total cellular protein profile was obtained using 2-dimensional gel electrophoresis (2-DE), followed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) analyses of proteins with significant differences in expression following treatment with EGCG. The results revealed that EGCG induced apoptosis and inhibited the metastasis of HCCLM6 cells. The anti-metastatic effects of EGCG were associated with the inhibition of matrix metalloproteinase (MMP)-2 and MMP-9 activity. The expression levels of far upstream element (FUSE) binding protein 1 (FUBP1), heat shock protein beta 1 (HSPB1), heat shock 60 kDa protein 1 (chaperonin) (CH60) and nucleophosmin (NPM) proteins, which are associated with metastasis, were significantly altered in the EGCG-treated HCCLM6 cells. The data from the present study suggest that EGCG has potential as a therapeutic agent for the treatment of HCC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemical substances that induce larval settlement have been the focus of many gastropod studies due to the importance of wild stock recruitment and production within aquaculture facilities. Gamma-aminobutyric acid (GABA), GABA analogs, and GABA-mimetics associated with certain crustose coralline algae (CCA), are known to induce larval settlement in commercial abalone (Haliotis) species, and other gastropods. Furthermore, mucus secreted from these gastropods has been shown to induce larval settlement, but the stimulatory components of mucus have not been thoroughly investigated. We now present data confirming that GABA is the settlement-inducing effector molecule contained within abalone mucus. To do this, we initially generated anti-GABA for use in immunoenzyme and immunofluorescent microscopy. Using these techniques GABA was identified in the nerves and epithelial cells of the foot, including mucus. Dried mucus samples subject to HPLC analysis revealed a mean concentration of 0.68 mM GABA after sample rehydration. The presence of GABA in these samples was confirmed by time-of-flight mass spectroscopy (TOF-MS). In addition, GABA was detected in the mucus of several abalone species and other gastropods by immunocytochemistry. Subsequent bioassays using both dry and fresh mucus strongly promoted induction of larval settlement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drug targeting is an active area of research and nano-scaled drug delivery systems hold tremendous potential for the treatment of neoplasms. In this study, a novel cyclodextrin (CD)-based nanoparticle drug delivery system has been assembled and characterized for the therapy of folate receptor-positive [FR(+)] cancer. Water-soluble folic acid (FA)-conjugated CD carriers (FACDs) were successfully synthesized and their structures were confirmed by 1D/2D nuclear magnetic resonance (NMR), matrix-assisted laser desorption ionization time-of-flight mass spectrometer (MALDI-TOF-MS), high performance liquid chromatography (HPLC), Fourier transform infrared spectroscopy (FTIR), and circular dichroism. Drug complexes of adamatane (Ada) and cytotoxic doxorubicin (Dox) with FACD were readily obtained by mixed solvent precipitation. The average size of FACD-Ada-Dox was 1.5-2.5 nm. The host-guest association constant Ka was 1,639 M-1 as determined by induced circular dichroism and the hydrophilicity of the FACDs was greatly enhanced compared to unmodified CD. Cellular uptake and FR binding competitive experiments demonstrated an efficient and preferentially targeted delivery of Dox into FR-positive tumor cells and a sustained drug release profile was seen in vitro. The delivery of Dox into FR(+) cancer cells via endocytosis was observed by confocal microscopy and drug uptake of the targeted nanoparticles was 8-fold greater than that of non-targeted drug complexes. Our docking results suggest that FA, FACD and FACD-Ada-Dox could bind human hedgehog interacting protein that contains a FR domain. Mouse cardiomyocytes as well as fibroblast treated with FACD-Ada-Dox had significantly lower levels of reactive oxygen species, with increased content of glutathione and glutathione peroxidase activity, indicating a reduced potential for Dox-induced cardiotoxicity. These results indicate that the targeted drug complex possesses high drug association and sustained drug release properties with good biocompatibility and physiological stability. The novel FA-conjugated β-CD based drug complex might be promising as an anti-tumor treatment for FR(+) cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Various species in genus Hibiscus are traditionally known for their therapeutic attributes. The present study focused on the phytochemical analysis of a rather unexplored species Hibiscus caesius (H. caesius), using high-pressure liquid chromatography coupled with mass spectrometry (HPLC-MS). The analysis revealed five major compounds in the aqueous extract, viz. vanillic acid, protocatechoic acid, quercetin, quercetin glucoside and apigenin, being reported for the first time in H. caesius. Literature suggests that these compounds have important pharmacological traits such as anti-cancer, anti-inflammatory, anti-bacterial and hepatoprotective etc. however, this requires further pharmacological investigations at in vitro and in vivo scale. The above study concluded the medicinal potential of H. caesius.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A wool fabric has been subjected to an atmospheric-pressure treatment with a helium plasma for 30 seconds. X-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectrometry confirmed removal of the covalently-bound fatty acid layer (F-layer) from the surface of the wool fibers, resulting in exposure of the underlying, hydrophilic protein material. Dye uptake experiments were carried out at 50 ºC to evaluate the effects of plasma on the rate of dye uptake by the fiber surface, as well as give an indication of the adsorption characteristics in the early stages of a typical dyeing cycle. The dyes used were typical, sulfonated wool dyes with a range of hydrophobic characteristics, as determined by their partitioning behavior between water and n-butanol. No significant effects of plasma on the rate of dye adsorption were observed with relatively hydrophobic dyes. In contrast, the relatively hydrophilic dyes were adsorbed more rapidly (and uniformly) by the plasma-treated fabric. It was concluded that adsorption of hydrophobic dyes on plasma-treated wool was influenced by hydrophobic interactions, whereas electrostatic effects predominated for dyes of more hydrophilic character. On heating the dyebath to 90 ºC in order to achieve fiber penetration, no significant effect of the plasma treatment on the extent of uptake or levelness of a relatively hydrophilic dye was observed as equilibrium conditions were approached.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the current work, two different coatings, nitrocarburised (CN) and titanium carbonitride (TiCN) on M2 grade high speed tool steel, were prepared by commercial diffusion and physical vapour deposition (PVD) techniques, respectively. Properties of the coating were characterised using a variety of techniques such as Glow-Discharge Optical Emission Spectrometry (GD-OES) and Scanning Electron Microscopy (SEM). Three non-commercial, oil-based lubricants with simplified formulations were used for this study. A tribological test was developed in which two nominally geometrically-identical crossed cylinders slide over each other under selected test conditions. This test was used to evaluate the effectiveness of a pre-applied lubricant film and a surface coating for various conditions of sliding wear. Engineered surface coatings can significantly improve wear resistance of the tool surface but their sliding wear performances strongly depend on the type of coating and lubricant combination used. These coating-lubricant interactions can also have a very strong effect on the useful life of the lubricant in a tribological system. Better performance of lubricants during the sliding wear testing was achieved hen used with the nitrocarburised (CN) coating. To understand the nature of the interactions and their possible effects on the coating-lubricant system, several surface analysis techniques were used. The molecular level investigation of Fourier Transform Infrared Spectroscopy (FTIR) revealed that oxidative degradation occurred in all used oil-based lubricants during the sliding wear test but the degradation behaviour of oil-based lubricants varied with the coating-lubricant system and the wear conditions. The main differences in the carbonyl oxidation region of the FTIR spectra (1900-1600 cm-1) between different coating-lubricant systems may relate to the effective lifetime of the lubricant during the sliding wear test. Secondary Ion Mass Spectrometry (SIMS) depth profiling shows that the CN coating has the highest lubricant absorbability among the tested tool surfaces. Diffusion of chlorine (C1), hydrogen (H) and oxygen (O) into the surface of subsurface of the tool suggested that strong interactions occurred between lubricant and tool surface during the sliding wear test. The possible effects of the interactions on the performance of whole tribological system are also discussed. The study of Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) indicated that the envelope of hydrocarbons (CmHn) of oil lubricant in the positive TOF-SIMS spectra shifted to lower mass fragment after the sliding wear testing due to the breakage of long-chain hydrocarbons to short-chain ones during the degradation of lubricant. The shift of the mass fragment range of the hydrocarbon (CmHn) envelope caries with the type of both tool surface and lubricant, again confirming that variation in the performance of the tool-lubricant system relates to the changes in surface chemistry due to tribochemical interactions at the tool-lubricant interface under sliding wear conditions. The sliding wear conditions resulted in changes not only in topography of the tool surface due to mechanical interactions, as outlined in Chapter 5, but also in surface chemistry due to tribochemical interactions, as discussed in Chapters 6 and 7.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Television viewing time is associated with obesity risk independent of leisure-time physical activity (LTPA). However,
it is unknown whether the relationship of TV viewing time with body mass index (BMI) is moderated by other domains of physical activity. Methods: A mail survey collected height;weight; TV viewing time; physical activity for transportation (habitual transport behavior; past week walking and bicycling), for recreation (LTPA), and in workplace; and sociodemographic variables in Adelaide, Australia. General linear models examined whether physical activity domains moderate the association between BMI and TV viewing time. Results: Analysis of the sample (N = 1408) found that TV time, habitual transport, and LTPA were independently associated with participant’s BMI. The interaction between TV time and habitual transport with BMI was significant, while that between TV time and LTPA was not. Subgroup analyses found that adjusted mean BMI was significantly higher for the high TV viewing category, compared with the low category,
among participants who were inactive and occasionally active in transport, but not among those who were regularly active. Conclusions: Habitual active transport appeared to moderate the relationship between TV viewing time and BMI. Obesity risk associated with prolonged TV viewing may be mitigated by regular active transport.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The generation of potentially corrosion-resistant films on light metal alloys of magnesium have been investigated. Magnesium alloy, ZE41 [Mg−Zn−Rare Earth (RE)-Zr, nominal composition 4 wt % Zn, 1.7 wt % RE (Ce), 0.6 wt % Zr, remaining balance, Mg], was exposed under potentiostatic control to the ionic liquid trihexyl(tetradecyl)phosphonium diphenylphosphate, denoted [P6,6,6,14][DPP]. During exposure to this IL, a bias potential, shifted from open circuit, was applied to the ZE41 surface. Electrochemical impedance spectroscopy (EIS) and chronoamperometry (CA) were used to monitor the evolution of film formation on the metal surface during exposure. The EIS data indicate that, of the four bias potentials examined, applying a potential of −200 mV versus OCP during the exposure period resulted in surface films of greatest resistance. Both EIS measurements and scanning electron microscopy (SEM) imaging indicate that these surfaces are substantially different to those formed without potential bias. Time of flight-secondary ion mass spectrometry (ToF-SIMS) elemental mapping of the films was utilized to ascertain the distribution of the ionic liquid cationic and anionic species relative to the microstructural surface features of ZE41 and indicated a more uniform distribution compared with the surface following exposure in the absence of a bias potential. Immersion of the treated ZE41 specimens in a chloride contaminated salt solution clearly indicated that the ionic liquid generated surface films offered significant protection against pitting corrosion, although the intermetallics were still insufficiently protected by the IL and hence favored intergranular corrosion processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A central composite rotatable design (CCRD) method was used to investigate the performance of the accelerated thermomolecular adhesion process (ATmaP), at different operating conditions. ATmaP is a modified flame-treatment process that features the injection of a coupling agent into the flame to impart a tailored molecular surface chemistry on the work piece. In this study, the surface properties of treated polypropylene were evaluated using X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). All samples showed a significant increase in the relative concentration of oxygen (up to 12.2%) and nitrogen (up to 2.4%) at the surface in comparison with the untreated sample (0.7% oxygen and no detectable nitrogen) as measured by XPS. ToF-SIMS and principal components analysis (PCA) showed that ATmaP induced multiple reactions at the polypropylene surface such as chain scission, oxidation, nitration, condensation, and molecular loss, as indicated by changes in the relative intensities of the hydrocarbon (C3H7+ , C3H5+ , C4H7+, and C5H9+), nitrogen and oxygen-containing secondary ions (C2H3O+, C3H8N+, C2H5NO+, C3H6NO+, and C3H7NO+). The increase in relative intensity of the nitrogen oxide ions (C2H5NO+ and C3H7NO+) correlates with the process of incorporating oxides of nitrogen into the surface as a result of the injection of the ATmaP coupling agent.