8 resultados para Tierra deformable

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The data-based modeling of the haptic interaction simulation is a growing trend in research. These techniques offer a quick alternative to parametric modeling of the simulation. So far, most of the use of the data-based techniques was applied to static simulations. This paper introduces how to use data-based model in dynamic simulations. This ensures realistic behavior and produce results that are very close to parametric modeling. The results show that a quick and accurate response can be achieved using the proposed methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model developed previously to analyze force measurements between two deformable droplets in the atomic force microscope [Langmuir 2005, 21, 2912-2922] is used to model the drainage of an aqueous film between a mica plate and a deformable mercury drop for both repulsive and attractive electrical double-layer interactions between the mica and the mercury. The predictions of the model are compared with previously published data [Faraday Discuss. 2003, 123, 193-206] on the evolution of the aqueous film whose thickness has been measured with subnanometer precision. Excellent agreement is found between theoretical results and experimental data. This supports the assumptions made in the model which include no-slip boundary conditions at both interfaces. Furthermore, the successful fit attests to the utility of the model as a tool to explore details of the drainage mechanisms of nanometer-thick films in which fluid flow, surface deformations, and colloidal forces are all involved. One interesting result is that the model can predict the time at which the aqueous film collapses when attractive mica-mercury forces are present without the need to invoke capillary waves or other local instabilities of the mercury/electrolyte interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study represents a preliminary step towards data-driven computation of contact dynamics during manipulation of deformable objects at two points of contact. A modeling approach is proposed that characterizes the individual interaction at both points and the mutual effects of the two interactions on each other via a set of parameters. Both global as well as local coordinate systems are tested for encoding the contact mechanics. Artificial neural networks are trained on simulated data to capture the object behavior. A comparison of test data with the output of the trained system reveals a mean squared error percentage between 1% and 3% for simple interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the problem of heterogeneous deformable model accuracy using the finite element methods (FEM). Classic FEM uses predefined shape functions for interpolation and does not account easily for regions of discontinuities. Extended finite element methods (XFEM) use enrichment functions to compensate for the change in an element degrees of freedom (DoFs) in deformable objects. The XFEM is an accurate and fast method as no remeshing is required. In this study we investigate the performance of XFEM and demonstrate how it may be applied to discontinuities of materials that exist in heterogeneous (piece-wise homogeneous) models. The results show realistic stress prediction compared to modeling the same objects with classic FEM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One approach to the detection of curves at subpixel accuracy involves the reconstruction of such features from subpixel edge data points. A new technique is presented for reconstructing and segmenting curves with subpixel accuracy using deformable models. A curve is represented as a set of interconnected Hermite splines forming a snake generated from the subpixel edge information that minimizes the global energy functional integral over the set. While previous work on the minimization was mostly based on the Euler-Lagrange transformation, the authors use the finite element method to solve the energy minimization equation. The advantages of this approach over the Euler-Lagrange transformation approach are that the method is straightforward, leads to positive m-diagonal symmetric matrices, and has the ability to cope with irregular geometries such as junctions and corners. The energy functional integral solved using this method can also be used to segment the features by searching for the location of the maxima of the first derivative of the energy over the elementary curve set.