5 resultados para Thunderstorm

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thunderstorms have often been linked to epidemics of asthma, especially during the grass flowering season; however, the precise mechanisms explaining this phenomenon are unknown. Evidence of high respirable allergen loadings in the air associated with specific meteorologic events combined with an analysis of pollen physiology suggests that rupture of airborne pollen can occur. Strong downdrafts and dry, cold outflows distinguish thunderstorm rain from frontal rain. The weather system of a mature thunderstorm likely entrains grass pollen into the cloud base, where pollen rupture would be enhanced, then transports the respirablesized fragments of pollen debris to ground level where outflows distribute them ahead of the rain. The conditions occurring at the onset of a thunderstorm might expose susceptible people to a rapid increase in concentrations of pollen allergens in the air that can readily deposit in the lower airways and initiate asthmatic reactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Observations of departing Siberian-breeding Red Knots Calidris canutus canutus from their central staging site during northward migration, the Schleswig-Holstein Wadden Sea, Germany, in early June 2008, challenge the established notion that departing long-distance migrating waders only leave around sunset. During four days we scanned several thousand Red Knots for colour-ringed individuals and found a total of 20 different individuals that were previously ringed at either their main wintering site, the Banc d'Arguin in Mauritania, or at stopover sites on the Atlantic coast of France. Body masses of captured Red Knots in Schleswig-Holstein were higher than 200 g and hematocrite values showed an average of 58%, clearly indicating that they were ready for take-off. On all except one evening, we noted impressive departure movements during the incoming tide. On that exceptional evening a cold front thunderstorm passed over the area. Late the next morning, thousands of Red Knots departed during the incoming tide. We assume that the birds avoided taking off in adverse weather conditions and elaborate why Red Knots presumably traded off advantages from departing during twilight. We suggest that during spring migration, schedules are so tight that further delays decrease fitness, either because it would cause another full day of exposure to high predation risk by falcons, or because of conditions upon arrival on the tundra.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

RATIONALE: To determine whether the potential for previous termpollennext term fragmentation is increased during thunderstorms by exploring the previous termeffectsnext term of previous termelectricnext termprevious termfieldsnext term, with magnitude as found in the outdoor environment.

METHODS: Fresh previous termpollennext term grains were collected from bermudagrass flowers. A light microscope was modified with the addition of an previous termelectricnext termprevious termfieldnext term generated from a DC source (0-20 V) that was applied to the stage. Water was added to test for previous termpollennext termprevious termrupturenext term and to assess previous termpollennext term viability.

RESULTS: Bermuda grass previous termpollennext term did not previous termrupturenext term within 1 h of contact with water. Only after exposure to an previous termelectricnext termprevious termfieldnext term did Bermudagrass previous termpollennext term show a considerable amount of rupturing immediately upon immersion in water. The higher the voltage the previous termpollennext term is exposed to before coming into contact with water, the higher the percentage of previous termrupturenext term of the previous termpollennext term. previous termElectricnext termprevious termfieldsnext term, generated in the laboratory and of magnitude found during thunderstorms, affected the previous termpollennext term after as little as a 5 s exposure. The highest percentage of previous termrupturenext term occurred after exposures of at least 10 s: 80% previous termrupturenext term occurred after 10 s exposure at 10kVolts/m. This previous termeffectnext term is sustained for at least 15 min.

CONCLUSIONS: Thunderstorm regularly generate previous termelectricnext termprevious termfieldsnext term up to 5 kV/m in strength, and can reach 10kV/m, and cover several km in distance. The magnitude of the previous termelectricnext termprevious termfieldsnext term that affects the previous termpollennext term grains in the laboratory is low enough to be commonly found in the outdoor environment during thunderstorms. These previous termelectricnext termprevious termfields prime previous termpollen grains for more rapid release of allergenic particles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pollen allergy has been found in 80–90% of childhood asthmatics and 40–50% of adult-onset asthmatics. Despite the high prevalence of atopy in asthmatics, a causal relationship between the allergic response and asthma has not been clearly established. Pollen grains are too large to penetrate the small airways where asthma occurs. Yet pollen cytoplasmic fragments are respirable and are likely correlated with the asthmatic response in allergic asthmatics. In this review, we outline the mechanism of pollen fragmentation and possible pathophysiology of pollen fragment-induced asthma. Pollen grains rupture within the male flowers and emit cytoplasmic debris when winds or other disturbances disperse the pollen. Peak levels of grass and birch pollen allergens in the atmosphere correlated with the occurrence of moist weather conditions during the flowering period. Thunderstorm asthma epidemics may be triggered by grass pollen rupture in the atmosphere and the entrainment of respirable-sized particles in the outflows of air masses at ground level. Pollen contains nicotinamide adenine dinucleotide phosphate (reduced) oxidases and bioactive lipid mediators which likely contribute to the inflammatory response. Several studies have examined synergistic effects and enhanced immune response from interaction in the atmosphere, or from co-deposition in the airways, of pollen allergens, endogenous pro-inflammatory agents, and the particulate and gaseous fraction of combustion products. Pollen and fungal fragments also contain compounds that can suppress reactive oxidants and quench free radicals. It is important to know more about how these substances interact to potentially enhance, or even ameliorate, allergic asthma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Grass pollen allergens are known to be present in the atmosphere in a range of particle sizes from whole pollen grains (approx. 20 to 55 μim in diameter) to smaller size fractions < 2.5 μ (fine particles, PM2.5). These latter particles are within the respirable range and include allergen-containing starch granules released from within the grains into the atmosphere when grass pollen ruptures in rainfall and are associated with epidemics of thunderstorm asthma during the grass pollen season. The question arises whether grass pollen allergens can interact with other sources of fine particles, particularly those present during episodes of air pollution.

Objective We propose the hypothesis that free grass pollen allergen molecules, derived from dead or burst grains and dispersed in microdroplets of water in aerosols, can bind to fine particles in polluted air.

Methods We used diesel exhaust carbon particles (DECP) derived from the exhaust of a stationary diesel engine, natural highly purified Lol p 1, immunogold labelling with specific monoclonal antibodies and a high voltage transmission electron -microscopic imaging technique

Results DECP are visualized as small carbon spheres, each 30–60 nm in diameter, forming fractal aggregates about 1–2μ in diameter. Here we test our hypothesis and show by in vitro experiments that the major grass pollen allergen, Lol p I. binds to one defined class of fine particles, DECP.

Conclusion DECP are in the respirable size range, can bind to the major grass pollen allergen Lol p I under in vitro conditions and represent a possible mechanism by which allergens can become concentrated in polluted air and thus trigger attacks of asthma.