11 resultados para Thornthwaite Moisture Index

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geographer C. W. Thornthwaite proposed in 1948 a moisture index called Thornthwaite Moisture Index (TMI) as part of a water balance model for a new classification system for climate. The importance of TMI climatic classification has been recognised in many areas of knowledge and practice worldwide over the last 60 years. However, although past climate research was focused on developing adequate methods for climate classification, current research is more concerned with understanding the patterns of climate change. The use of TMI as an indicator for climate change is still an incipient area of research. The contributions of this paper are twofold. First, it is to fully document a methodology based on geostatistics adopted to produce a time series of TMI maps that are accurate and have high spatial resolution. The state of Victoria, in Australia, over the last century, is used as the case study. Second, by analysing these maps, the paper presents a general evaluation of the spatial patterns found in Victoria related to moisture variability across space and over time. Some potential implications of the verified moisture changes are discussed, and a number of ideas for further development are suggested. © 2014 Institute of Australian Geographers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Significant long term changes in the earth’s climate have occurred in the past but recently there has been more severe climate fluctuation than have occurred in the past few centuries. The effect of this climate change on the foundation conditions of roads and low-rise buildings is costing several hundred billion dollars world-wide. A method which tracks this climate change will be of great value for companies and governments. C.W. Thornthwaite (1948) defined the Thornthwaite Moisture Index (TMI) as the first base for his climate classification system and mapping in the United States. There are 3 important factors to predict ground movement: (a) the degree of moisture index change (b) the depth at which this change occurs and (c) the foundation soil type. The water budget model was used by Thornthwaite (1948) to calculate the moisture index. This paper also discusses two typical examples of the use of this model. Originally TMI’s were mainly used to map soil moisture conditions for agriculture but soon became a method to predict environmental and pavement foundation changes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of climate change on the shallow expansive foundation conditions of resident dwellings is costing several hundred billion dollars worldwide. The design and costs of constructing or repairing residential footings is greatly influenced by the degree of ground movement, which is driven by the magnitude of change in soil moisture. The impacts of climate change on urban infrastructure are expected to include accelerated degradation of materials and foundations of buildings and facilities, increased ground movement, changes in ground water affecting the chemical structure of foundations, and fatigue of structures from extreme storm events. Previous research found that residential houses that were built less than five years ago have suffered major cracks and other damage caused by slab movement after record rainfall. The Thornthwaite Moisture Index (TMI) categorises climate on the basis of rainfall, temperature, potential evapotranspiration and the water holding capacity of the soil. Originally TMI was mainly used to map soil moisture conditions for agriculture but soon became a method to predict pavement and foundation changes. Few researchers have developed TMI maps for Australia, but generally, their accuracy is low or unknown, and their use is limited. The aims of this paper are: (1) To produce accurate maps of TMI for the state of Victoria for 100 years (1913 to 2012) in 20 year periods using long-term historical climatic data and advanced spatial statistics methods in GIS, and (2) Analyse the spatial and temporal changes of TMI in Victoria. Preliminary results suggest that a better understanding of climate change through long-term TMI mapping can assist urban planning and guide construction regulations towards the development of cities which are more resilient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a Neural Network Model was used to develop a ranking of the potential damage influences for light structures on expansive soils in Victoria. These influences include geology, Thornthwaite moisture index, vegetation covers, construction foundation type, construction wall type, geographical region and age of building when first inspected. Approximately 400 cases of damage to light structures in Victoria, Australia were considered in this study. Feedforward Backpropagation was adopted to train the data. The ranking of importance was estimated using connection weight approach and then compared to results calculated from sensitivity analysis. From the analysis, the ranking of importance for potential damage factor was noted.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study investigated the effects of fenugreek flour (Trigonella foenum-graecum) and debittered fenugreek polysaccharide (FenuLife®) inclusion on the physical and sensory quality characteristics, and glycaemic index (GI) of chickpea–rice based extruded products. Based on preliminary evaluation with different proportions of chick pea and rice, a blend of 70:30 chickpea and rice was chosen as the control for further studies. The control blend, replaced with fenugreek flour at 2%, 5% and 10%, or fenugreek polysaccharide at 5%, 10%, 15% and 20%, was extruded at the optimum processing conditions as specified in the detailed study. The extruded products were evaluated for their physical (moisture retention, expansion, hardness, water solubility index (WSI) and water absorption index (WAI)), sensory (flavor, texture, color and overall acceptability) characteristics and in vitro GI to evaluate their suitability as extruded snack products.

Due to the distinct bitter taste, inclusion of fenugreek flour was not acceptable at levels more than 2% in extruded chickpea based products. Addition of fenugreek polysaccharide resulted in slight reduction in radial expansion (P < 0.05), while longitudinal expansion increased. WAI increased while WSI decreased compared to the control (P < 0.05). The mean scores of sensory evaluation indicated that all products containing fenugreek polysaccharide up to 15% were within the acceptable range. There were no significant differences (P > 0.05) between products containing 5–15% fenugreek polysaccharide in their color, flavor, texture and overall quality.

Fenugreek, in the form of debittered polysaccharide (FenuLife®) could be incorporated up to a level of 15% in a chickpea–rice blend to develop snack products of acceptable physical and sensory properties with low GI Index.