3 resultados para Thermal roof

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A key criterion by which any building will be judged when its environmental impact is assessed is its thermal performance. This paper describes the simulation of an office module in a three-storey university building in south eastern Australia. The module, located at the north-west corner of the top floor of the building, was chosen because it is likely to have the highest cooling load - a primary concern of energy conscious designers of commercial buildings for most parts of Australia.

In the paper, the initial key assumptions are stated, together with a description of a "reference" or base case, against which improvements in thermal performance were measured. The simulation process identified the major influences on thermal performance. This enabled changes in materials and construction, as well as basic design concepts to be evaluated. Features incorporated into the base case such as a metal roof and glazed walkway were found to have adverse influence on energy consumption, and were consequently rejected in preference for an improved design which included a hypocaust slab system on the roof of the office module. The final design was predicted to reduce the annual energy consumption for heating and cooling by 72% and 76% respectively.

La performance thermique est l'un des critegraveres cleacutes de l'eacutevaluation environnementale de tout bacirctiment. Cet article deacutecrit la simulation d'un module de bureau appartenant agrave un immeuble de trois eacutetages d'une universiteacute du sud-est de l'Australie. Ce module, situeacute agrave l'angle nord-ouest de l'eacutetage supeacuterieur du bacirctiment a eacuteteacute choisi car c'eacutetait lui qui, vraisemblablement, avait la charge de refroidissement la plus eacuteleveacutee, ce qui est une preacuteoccupation majeure des concepteurs conscients des problegravemes d'eacutenergie des bacirctiments commerciaux dans la plus grande partie du pays. Le processus de simulation a fait apparaicirctre trois influences principales sur la performance thermique par rapport agrave un cas de base. Cela a permis d'eacutevaluer les modifications apporteacutees aux mateacuteriaux et agrave la construction ainsi qu'aux avant-projets. Les caracteacuteristiques inteacutegreacutees dans le cas de base comme le toit meacutetallique et la passerelle vitreacutee avaient une influence neacutefaste sur la consommation d'eacutenergie et ont donc eacuteteacute rejeteacutees au beacuteneacutefice d'un concept ameacutelioreacute qui comprenait une dalle de type hypocauste sur le toit du module de bureau. Le concept final devrait reacuteduire la consommation annuelle d'eacutenergie pour le chauffage et le refroidissement de 72 % et 76 % respectivement, ce qui donne une ideacutee de la valeur ajouteacutee au processus de production agrave partir de proceacutedures avanceacutees de modeacutelisation et de simulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of solar collectors with coloured absorbers for water heating is an area of particular interest when considering their integration with buildings. By matching the absorber colour with that of the roof or façade of the building, it is possible to achieve an architecturally and visually pleasing result. Despite the potential for the use of coloured absorbers, very little work has been undertaken in the field.

In this study, the thermal performance of a series of coloured (ranging from white to black), building integrated solar collectors for water heating was examined both theoretically and experimentally. Subsequently, the annual solar fraction for typical water heating systems with coloured absorbers was calculated. The results showed that coloured solar collector absorbers can make noticeable contributions to heating loads. Furthermore, although their thermal efficiency is lower than highly developed selective coating absorbers, they offer the advantage of improved aesthetic integration with buildings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Located on the Annapurna trekking trail in Nepal, Siurung is a remote mountain village where outside influences are almost non-existent. The thermal comfort levels of a recently-constructed kindergarten are well below international standards because of the climate and poor building envelope. A TRNSYS model of the kindergarten has been used to predict the current occupant comfort levels and subsequently determine the most effective way to alter the traditional construction methods to improve comfort levels. Improvements investigated were: reduced air infiltration, roof and wall insulation (separately and together), installation of a smokeless stove and a combination of all strategies.The model predicted that in the current building the PMV ranges from -1.94 in October to - 0.99 in July. It also predicted that the current PPD (%) ranges from 100 in January to 26 in July. With the combination of strategies, the predicted PMV values were all improved to between -1.08 and +0.34, and the PPD values of all months except January were reduced to below 10%. When improving the comfort levels of an existing school, reducing air infiltration, adding roof insulation and installing a smokeless stove are the most effective strategies. When constructing a new school, however, reducing air infiltration and adding insulation to the walls and roof are the most effective and feasible strategies. If a smokeless stove can be afforded and transported to the site, it is recommended that one be installed as it provides a more significant improvement than any other single strategy.