25 resultados para Thermal characterization

em Deakin Research Online - Australia


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Advanced polymeric materials and their respective composites are fast becoming one of the world's most frequently used engineering materials. They find application in the manufacture of e.g. boat hulls, high performance motor vehicles, aircraft components and sports goods. Their high specific strength and specific stiffness give them the edge in applications where weight savings are critical, but their long-term durability is often questioned. These materials are susceptible to environmental conditions such as temperature and humidity. There is also a lack of relevant data, due to the long time-scales required for testing. In this study, the Raman technique has been used to monitor the degradation of two composite systems, namely: a rubber toughened vinylester material used in the marine industry and a high temperature bismaleimide/carbon fibre aerospace composite. Preliminary Raman studies show that the toughening rubber particles dispersed in the cured vinylester resin are leached out during hygrothermal ageing. The weight gain during ageing suggests that this leaching process occurs concurrently with the absorption of water molecules. An increase in the degree of cross-linking is observed when bismaleimide/carbon fibre composite is aged at high temperature. This cross- linking tendency decreases with increasing depth within the carbon fibre bundle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heat generation in fabrics coated with the conductive polymer polypyrrole was investigated. The PET fabrics were coated by chemical synthesis using four different oxidizing agent–dopant combinations. The samples from the four different dopant systems all show an increase in temperature when a fixed voltage is applied to the fabric. The antraquinone-2-sulfonic acid (AQSA) sodium salt doped polypyrrole coating was the most effective in heat generation whereas the sodium perchlorate dopant system was the least effective. The power density per unit area achieved in polypyrrole coated polyester–Lycra® fabric with 0.027 mol/l of AQSA acting as dopant was 430 W/m2. The power density per unit area achieved for the sodium perchlorate system, using the same synthesis conditions, was 55 W/m2.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Superfine wool powder was blended and extruded with poly(propylene) (PP) to produce blend pellets, and the extruded pellets were hot-pressed into a blend film. SEM photographs show that the powder could be uniformly incorporated with PP after extrusion. FT-IR spectra shows that no substantial changes occurred in the chemical structure of both PP and wool powder in the blend film. X-Ray diffraction analysis indicates that crystallinity of the blend film was much higher than that of the wool powder and little lower than that of PP. TG-tested results indicate that the thermal stability of the blend film declined with an increase in the powder content. Endothermic peaks of the wool powder in the blend film become more obvious as the powder content increases. Mechanical properties decline greatly with an increase in the wool powder content in the blend film.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, superfine wool powder was plasticized with glycerol and hot-pressed into a film. Scanning electron microscopy photos showed that the superfine wool powder could be molded into a smooth film and that the wool powder was distributed evenly in the cross section of the film. Fourier transform infrared analysis revealed no substantial changes in the chemical structure of the wool powder after hot pressing, but the absorbing peaks of glycerol were found in the spectrum. X-ray diffraction analysis showed that the overall crystallinity increased after the wool powder was hot-pressed into film. Thermogravimetry (TG) analysis indicated that the thermal stability of the hot-pressed film decreased. A transition point appeared in the TG curve of the wool hot-pressed film as glycerol was added. The differential thermal analysis curve of the film showed sharp absorbing peaks similar to that of wool powder. With increasing glycerol content, the film showed increasing ductility and softness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intestinal fatty acid binding protein (I-FABP) is present at high levels in the absorptive cells of the intestine (enterocytes) where it plays a role in the intracellular solubilization of fatty acids (FA). However, I-FABP has also been shown to bind to a range of non-FA ligands, including some lipophilic drug molecules, albeit with generally lower affinity than FA. The significance of these lower affinity interactions with exogenous compounds is not known. In this manuscript, we describe further characterization of drug-rat I-FABP binding interactions using a thermal-shift assay. A structural explanation of the observed affinity of rat I-FABP for different drugs based on spectroscopic data and modeling experiments is presented. In addition, immunocytochemistry has been used to probe the expression of I-FABP in a cell culture model reflective of the absorptive cells of the small intestine. Taken together, these data suggest a possible role for I-FABP in the disposition of some lipophilic drugs within the enterocyte.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel natural rubber/silica (NR/SiO2) nanocomposite is developed by combining self-assembly and latex-compounding techniques. The results show that the SiO2 nanoparticles are homogenously distributed throughout NR matrix as nano-clusters with an average size ranged from 60 to 150 nm when the SiO2 loading is less than 6.5 wt%. At low SiO2 contents (less-than-or-equals, slant4.0 wt%), the NR latex (NRL) and SiO2 particles are assembled as a core-shell structure by employing poly (diallyldimethylammonium chloride) (PDDA) as an inter-medium, and only primary aggregations of SiO2 are observed. When more SiO2 is loaded, secondary aggregations of SiO2 nanoparticles are gradually generated, and the size of SiO2 cluster dramatically increases. The thermal/thermooxidative resistance and mechanical properties of NR/SiO2 nanocomposites are compared to the NR host. The nanocomposites, particularly when the SiO2 nanoparticles are uniformly dispersed, possess significantly enhanced thermal resistance and mechanical properties, which are strongly depended on the morphology of nanocomposites. The NR/SiO2 has great potential to manufacture medical protective products with high performances.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The crystal structures of several low-melting salts containing trihalide ions, namely 1-ethyl-3-methylimidazolium tribromide ([C2mim][Br3]), 1-ethyl-1-methylpyrrolidinium tribromide ([C2mpyr][Br3]), and 1-propyl-1-methylpyrrolidinium triiodide ([C3mpyr][I3]), are reported for the first time. Thermal analysis reveals that the tribromide salts are lower-melting than their monohalide analogues. Analysis of the crystal structures allows examination of the influence of the anions on the physical properties of the salts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

13C nuclear magnetic resonance (n.m.r.) has been used to study polypyrrole and N-substituted polypyrrole in the solid state. The extent of oxidation appears to be counterion-dependent; in particular, the quinoid structure appears favoured in the films prepared with dodecyl sulfate. Resonances associated with the quinoid unit are lost upon reduction of the polypyrrole film, which supports the idea that the quinoid structure is associated with the oxidized form of polypyrrole. N-substituted polypyrroles have a more distinct resonance at 110 ppm, which is linked to lower degrees of oxidation or charge delocalization in these systems. The decrease in conductivity of polypyrrole upon thermal ageing in air is associated with both the loss of counterion (‘thermal dedoping’) and the decomposition of the quinoid structure in the polymer backbone. There is no indication of carbonyl formation in the solid-state n.m.r. spectra obtained in the present study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Novel salts based the pyrrolidinium cation [Cnmpyr]+ (where n denote the number of carbons in the straight alkyl chain) and either the [NPf2] or [CTf3] anions have been synthesized and characterized to determine their thermal behaviour, stability, and conductivity. [C1mpyr][NPf2], [C2mpyr][NPf2], and [C1mpyr][CTf3] exhibit behaviour indicative of a plastic crystal phase. Both [C3mpyr][NPf2] and [C4mpyr][NPf2] are RTILs, while all of the [CTf3]salts, have melting points above 60°C. [C3mpyr][NPf2] exhibited the widest electrochemical window of 5.5 V. The [NPf2]– salt exhibited similar reductive limits to the [NTf2] anion, –3.2 V versus Fc+|Fc, while [CTf3] had lower reductive stability. The [CTf3] salts were more stable towards oxidation, +2.5 V versus Fc+|Fc, compared to the [NPf2] and [NTf2] salts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, cellulose nanofibers were obtained from wood pulp using a chemo-mechanical method and thin films were made of these cellulose nanofibers. The morphology of the films was studied by scanning electron microscopy (SEM). SEM image analysis revealed that the films were composed of cellulose nanofibers with an average diameter of around 32 nm. Other properties were also characterized, including the degree of crystallinity by X-ray diffraction, chemical bonding by infrared attenuated total reflectance analysis, and thermal properties by differential scanning calorimetry. The foldable, strong, and optically translucent cellulose nanofiber films thus obtained have many potential applications as micro/nano electronic devices, biosensors and filtration media, etc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wool powders with different particle sizes were examined in terms of their crystal structures, thermal properties, surface chemical compositions and moisture regains. It was found that the crystallinity of wool powders was increased, and the moisture regains were decreased as the particle sizes of wool powders were reduced. For comparison, the properties of activated charcoal were also investigated. The higher dye uptake of activated charcoal at pH 10. compared to that of wool powder, could be due to its greater surface area and porous structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study characterizes BaCo0.7Fe0.2Nb0.1O3−δ (BCFN) perovskite oxide and evaluates it as a potential cathode material for proton-conducting SOFCs with a BaZr0.1Ce0.7Y0.2O3-δ (BZCY) electrolyte. A four-probe DC conductivity measurement demonstrated that BCFN has a modest electrical conductivity of 2–15 S cm−1 in air with p-type semiconducting behavior. An electrical conductivity relaxation test showed that BCFN has higher Dchem and Kchem than the well-known Ba0.5Sr0.5Co0.8Fe0.2O3−δ oxide. In addition, it has relatively low thermal expansion coefficients (TECs) with values of 18.2 × 10−6 K−1 and 14.4 × 10−6 K−1 at temperature ranges of 30–900 °C and 30–500 °C, respectively. The phase reaction between BCFN and BZCY was investigated using powder and pellet reactions. EDX and XRD characterizations demonstrated that BCFN had lower reactivity with the BZCY electrolyte than strontium-containing perovskite oxides such as SrCo0.9Nb0.1O3-δ and Ba0.6Sr0.4Co0.9Nb0.1O3−δ. The impedance of BCFN was oxygen partial pressure dependent. Introducing water into the cathode atmosphere reduced the size of both the high-frequency and low-frequency arcs of the impedance spectra due to facilitated proton hopping. The cathode polarization resistance and overpotential at a current density of 100 mA cm−2 were 0.85 Ω cm−2 and 110 mV in dry air, which decreased to 0.43 Ω cm−2 and 52 mV, respectively, in wet air (∼3% H2O) at 650 °C. A decrease in impedance was also observed with polarization time; this was possibly caused by polarization-induced microstructure optimization. A promising peak power density of ∼585 mW cm−2 was demonstrated by an anode-supported cell with a BCFN cathode at 700 °C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphitic carbon nitride (g-C3N4) has been synthesized via a two-step pyrolysis of melamine (C3H6N6) at 800°C for 2 h under vacuum conditions. X-ray diffraction (XRD) patterns strongly indicate that the synthesized sample is g-C3N4. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) morphologies indicate that the product is mainly composed of graphitic carbon nitride. The stoichiometric ratio of C:N is determined to be 0.72 by elemental analysis (EA). Chemical bonding of the sample has been investigated by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). Electron energy loss spectroscopy (EELS) verifies the bonding state between carbon and nitrogen atoms. Optical properties of the g-C3N4 were investigated by PL (photoluminescence) measurements and UV–Vis (ultraviolet–visible) absorption spectra. We suppose its luminescent properties may have potential application as component of optical nanoscale devices. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were also performed.