2 resultados para Thermal aging

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inorganic nano fillers have demonstrated great potential to enhance the properties of natural rubber (NR). The present article reports the successful development of a NR nanocomposite reinforced with nano silica (SiO2). Its dynamic mechanical properties, thermal aging resistance, and morphology are investigated. The results show that the SiO2 nanoparticles are homogenously distributed throughout the NR matrix in a form of spherical nano-cluster with an average size of 80 nm when the SiO2 content is 4 wt%. With the introduction of SiO2, the thermal resistance and the storage modulus of NR host significantly increase, and the activation energy of relaxation of the nanocomposite, compared to the raw NR, increases from 90.1 to 125.8 kJ/mol.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work investigated the effect of woven E-glass mass (25 g/m2, 50 g/m2, 85 g/m2, 135 g/m2) on the painted surface finish of various thermoset (EPIKOTETM RIM935, EPIKOTETM 04434, Ultratec LpTM ES300, Ultratec LpTM SPV6035) carbon fibre composite laminates, before and after aging at 95 °C for 168 h. The as-moulded laminate surfaces were evaluated using surface profilometry techniques and the painted and aged surfaces were evaluated using a wave-scan distinctness of image (DOI) instrument. It was found that the 25 g/m2 E-glass surface layer assisted with reducing the roughness of the as-moulded surfaces and the long-term waviness of the painted surfaces due to the increase in resin-richness at the surface. The EPIKOTETM 04434 resin system that contained diglycidyl ether of bisphenol F (DGEBF) epoxy had the least change in long-term waviness with thermal aging due to the rigid fluorene-based backbone in comparison to the diglycidyl ether of bisphenol A (DGEBA) systems.