45 resultados para Tension Parallel to grain

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To quantify the frictional behaviour in sheet forming operations, several laboratory experiments which simulate the real forming conditions are performed. The Bending Under Tension Test is one such experiment which is often used to represent the frictional flow of sheet material around a die or a punch radius. Different mathematical representations are used to determine the coefficient of friction in the Bending Under Tension Test. In general the change in the strip thickness in passing over the die radius is neglected and the radius of curvature to thickness ratio is assumed to be constant in these equations. However, the effect of roller radius, sheet thickness and the surface pressure are also omitted in some of these equations. This work quantitatively determined the effect of roller radius and the tooling pressure on the coefficient of friction. The Bending Under Tension Test was performed using rollers with different radii and also lubricants with different properties. The tool radii were found to have a direct influence in the contact pressure. The effect of roller radius on friction was considerable and it was observed that there is a clear relationship between the contact pressure and the coefficient of friction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of grain size on deformation twinning in commercial purity titanium and magnesium alloy Mg–3Al–1Zn (AZ31) is investigated. Tensile tests were carried out for the titanium samples; compression testing was employed for the magnesium specimens. Average values of the true twin length, true twin thickness and the number density of twins were determined using stereology. A key difference between these two materials is that twinning contributes little to the plastic strain in the titanium while it accounts for nearly all of the early plastic strain in the magnesium. In some respects (e.g. volume fraction and number density) the phenomenology of twinning differed between the two materials, while in others (e.g. twin shape and size) both materials showed a similar response. It is found that in both materials, twins span the entirety of their parent grains only for grain sizes less than ∼30 μm. Both the nucleation density per unit of nucleating interface (i.e. grain and twin boundaries) and the aspect ratio of twins scale with applied stress. The impact of grain size on twin volume fraction is modelled analytically.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The collection contains an EBSD map of AZ31 compressed to 1% strain at room temperature in a direction parallel to the extrusion direction. The map was collected as part of an investigation into the role of twinning in the occurrence of a yield point elongation during deformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Within each columnar grain of a metallic film, the resistance to dislocation glide varies in function of the orientation of the slip plane with regard to the grain long axis. Plastic slip is impeded across grain boundaries and this contributes to the anisotropy of the overall mechanical response. A simplified (Taylor-type) crystal plasticity model is proposed that accounts for such effect of grain shape on the slip system selection. Assuming that dislocation density gradients are normal to the grain boundaries, backstresses developed at the onset of plasticity are estimated based on two definitions of the effective grain boundary spacing ‘‘seen’’ by individual slip systems. The first one reduces to the mean area-to-perimeter ratio of cross-sections of the grain cut parallel to the slip plane. Closed-form expressions of the average backstresses developed inside grains with spheroidal shapes are introduced in the crystal hardening law. The model reproduces the very high plastic anisotropy of electro-deposited pure iron with a strong c-fiber and a refined columnar grain structure [Yoshinaga, N., Sugiura, N., Hiwatashi, S., Ushioda, K., Kada, O., 2008. Deep drawability of electro-deposited pure iron having an extremely sharp h111i//ND texture. ISIJ Int. 48, 667–670]. It also provides valid estimates of the texture development and the influence of grain size on the yield strength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The alloy Ni-Mn-Ga aroused great interest for application as a magnetic shape memory (MSM) material. This effect is caused by reorientation of twin variants by an external magnetic field. So far, most of the experiments were concentrated on single crystals. But, the MSM effect can also be realised in polycrystals which can be prepared much more efficiently. Here, polycrystalline samples were prepared by directional solidification with a <100> fibre texture of the high temperature cubic austenitic phase parallel to the heat flow. Afterwards, a heat treatment was applied for chemical homogenisation and stress relaxation in the austenitic state. Then the samples were heated up to the austenitic state and cooled down under load. The microstructure was analysed by Electron Back Scatter Diffraction (EBSD) before and after that treatment. Mechanical training at room temperature and 40°C was tracked by recording stress-strain curves. By increasing the number of training cycles the strain also increases. The influence of different training temperatures was investigated on samples with different grain sizes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of grain size on the deformation behaviour in the fenite region of a Titanium stabilized Interstitial Free steel was investigated by hot torsion. The initial work hardening regime is followed by a softening regime where a broad peak stress develops. The peak stress and the stress at final strain were relatively insensitive to grain size. However, at low values of the Zener-Hollomon parameter, the strain to the peak stress was strongly dependent on the grain size. A series of microstructural parameters were examined to explain these observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of grain size on the warm deformation behaviour of a titanium stabilized interstitial free (IF) steel was investigated using hot torsion. The initial work hardening regime is followed by the development of a broad stress peak after which work softening occurs. The hypothetical saturation stress (Estrin–Mecking model) and the stress at final strain were relatively insensitive to grain size. However, the strain to the peak stress was strongly dependent on the grain size at low values of the Zener–Hollomon parameter. A simple phenomenological approach, using a combined Estrin–Mecking model and an Avrami type equation, was used to model the flow curves. The hypothetical saturation stress, the stress at final strain and the strain to peak stress were modelled using three different hyperbolic sine laws. A comparison with independent data from the literature shows that the apparent activation energy of deformation determined in this work (Q=372 kJ/mol) can be used to rationalize the steady-state stress in compression data found in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultrafine ferrite grain sizes were produced in a 0.11C-1.6Mn-0.2Si steel by torsion testing isothermally at 675 °C after air cooling from 1250 °C. The ferrite was observed to form intragranularly beyond a von Mises equivalent tensile strain of approximately 0.7 to 0.8 and the number fraction of intragranular ferrite grains continued to increase as the strain level increased. Ferrite nucleated to form parallel and closely spaced linear arrays or “rafts” of many discrete ultrafine ferrite grains. It is shown that ferrite nucleates during deformation on defects developed within the austenite parallel to the macroscopic shear direction (i.e., dynamic strain-induced transformation). A model austenitic Ni-30Fe alloy was used to study the substructure developed in the austenite under similar test conditions as that used to induce intragranular ferrite in the steel. It is shown that the most prevalent features developed during testing are microbands. It is proposed that high-energy jogged regions surrounding intersecting microbands provide potential sites for ferrite nucleation at lower strains, while at higher strains, the walls of the microbands may also act as nucleation sites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanical anisotropy of wrought Mg alloys is very high. For example the yield stress of extruded Mg-3Al-1Zn tested in tension can be as high as twice that obtained in compression [1]. To solve the problems this creates for product design it is necessary to understand the sensitivity of texture to processing parameters. Uniaxial compression tests at different temperatures were performed on cylindrical samples of an extruded Mg-3Al-1Zn bar. The texture
during this deformation changes from a situation where all crystal c-axes are nearly perpendicular to the sample axis to one where the c-axes are all nearly parallel to this axis. Compression was stopped at different strains to examine the rate of this texture change. Textures were examined using EBSD measurements. It was found that different mechanisms operate depending on the temperature of deformation and that a variety of textures can be created. Also it was seen that an annealing treatment performed after compression has an influence on the texture. Afterwards the samples were subjected to another uniaxial compression test to examine the influence of texture on room temperature properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The extrusion behaviour, texture and tensile ductility of five binary Mg-based alloys have been examined and compared to pure Mg. The five alloying additions examined were Al, Sn, Ca, La and Gd. When these alloys are compared at equivalent grain size, the La- and Gd-containing alloys show the best ductilities. This has been attributed to a weaker extrusion texture. These two alloying additions, La and Gd, were found to also produce a new texture peak with View the MathML source parallel to the extrusion direction. This “rare earth texture” component was found to be suppressed at high extrusion temperatures. It is proposed that the View the MathML source texture component arises from oriented nucleation at shear bands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In metals that yield as a consequence of mechanical twinning, the yield stress is a function of the grain size in much the same way as it is for dislocation glide. However, the sensitivity to grain size is typically greater. The intent of the present communication is to show that this can be understood, at least in part, in terms of a size effect that accompanies twinning. Some confirmatory data from a magnesium alloy are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shear bands formed during both cold and hot plastic deformation have been linked with several proposed mechanisms for the formation of ultrafine grains. The aim of the present work was to undertake a detailed investigation of the microstructural and crystallographic characteristics of the shear bands formed during hot deformation of a 22Cr-19Ni-3Mo (mass%) austenitic stainless steel and a Fe-30 mass%Ni based austenitic model alloy. These alloys were subjected to deformation in torsion and plane strain compression (PSC), respectively, at temperatures of 900°C and 950°C and strain rates of 0.7s-1 and 10s-1, respectively. Transmission electron microscopy and electron backscatter diffraction in conjunction with scanning electron microscopy were employed in the investigation. It has been observed that shear bands already started to form at moderate strains in a matrix of pre-existing microbands and were composed of fine, slightly elongated subgrains (fragments). These bands propagated along a similar macroscopic path and the subgrains, present within their substructure, were rotated relative to the surrounding matrix about axes approximately parallel to the sample radial and transverse directions for deformation in torsion and PSC, respectively. The subgrain boundaries were largely observed to be non-crystallographic, suggesting that the subgrains generally formed via multiple slip processes. Shear bands appeared to form through a co-operative nucleation of originally isolated subgrains that gradually interconnected with the others to form long, thin bands that subsequently thickened via the formation of new subgrains. The observed small dimensions of the subgrains present within shear bands and their large misorientations clearly indicate that these subgrains can serve as potent nucleation sites for the formation of ultrafine grain structures during both subsequent recrystallisation, as observed during the present PSC experiments, and phase transformation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

National Cultures construct identities by producing meanings about the nation with which we can identify, meanings which are contained in the stories which are told about it, memories which connect its present within its past, and images which are constructed of it. A museum, the repository of a nation’s culture, which connects the past to the present through recounting stories about the artefacts of past cultures is clearly significant in representing the culture of a nation.

This paper explores the architectural spaces of the new Museum of Scotland, which opened in Edinburgh in November 1998. The museum has opened at a crucial time in Scottish history. The Scottish cultural renaissance is manifested in the increase in cultural production and call for Scottish cultural institutions. Parallel to this renaissance are political developments with the re-creation of a Scottish Parliament in 1999. When the idea of ‘Scotland’ is itself in a state of flux, the stories of the nation told in the museum, which attempt to give a sense of location, a connection between the individual and the nation are especially important.

Thus, issues of identity and ‘self’ are crucially important in understanding the contemporary museum. Within this, the relations between the production of these narratives and their consumption by the public are little understood. The majority of studies have concentrated, although not exclusively, on the production of museum displays, primarily with the "politics and poetics" of display. This paper analyses the relationship between producer and consumer within the Museum of Scotland, attempting to reconnect the forces of production and consumption. In doing so, it focuses primarily on the differing conceptions of the ability of the Museum to be able to narrate the nation.

Based on interviews both with museum staff and with visitors to the museum, it argues that an understanding of the relationship between the museum and Scottish national identity can only be considered through an understanding of the tension between the producers’ intentions and the way in which consumers conceptualise the museum as a space for "telling the nation".

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A large-scale computational and statistical strategy is presented to investigate the development of plastic strain heterogeneities and plasticity induced roughness at the free surface in multicrystalline films subjected to cyclic loading conditions, based on continuum crystal plasticity theory. The distribution of plastic strain in the grains and its evolution during cyclic straining are computed using the finite element method in films with different ratios of in-plane grain size and thickness, and as a function of grain orientation (grains with a {1 1 1} or a {0 0 1} plane parallel to the free surface and random orientations). Computations are made for 10 different realizations of aggregates containing 50 grains and one large aggregate with 225 grains. It is shown that overall cyclic hardening is accompanied by a significant increase in strain dispersion. The case of free-standing films is also addressed for comparison. The overall surface roughness is shown to saturate within 10 to 15 cycles. Plasticity induced roughness is due to the higher deformation of {0 0 1} and random grains and due to the sinking or rising at some grain boundaries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The commercial magnesium alloy AZ31 has been subjected to a range of solution treatment regimes. These have then been extruded and their microstructure, texture, and precipitate populations characterized along with their mechanical properties. During the solution treatment, Mn-enriched particles develop and these remain largely unchanged throughout subsequent processing steps. A direct link between grain size and texture has been found, with coarser-grained specimens showing sharper textures. VPSC modeling has been used to quantify the effect of texture on the tensile yield strength, and it has been found that sharper textures have larger tensile yield strengths. Since coarser grain sizes have reduced Hall–Petch hardening, but have an additional texture-strengthening component, a region on the Hall–Petch plot for tension has been identified in which there is an insensitivity of strength to grain size. This has been quantitatively modeled and a texture-modified Hall–Petch plot for tension has been developed. The Mn-rich particles have also been shown to provide precipitate strengthening to the alloy of up to 40 MPa. The compressive behavior was clearer, with the compressive yield strength being directly correlated to grain size and unaffected by texture or precipitation hardening.