3 resultados para Tenancy

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-tenancy is a cloud computing phenomenon. Multiple instances of an application occupy and share resources from a large pool, allowing different users to have their own version of the same application running and coexisting on the same hardware but in isolated virtual spaces. In this position paper we survey the current landscape of multi-tenancy, laying out the challenges and complexity of software engineering where multi-tenancy issues are involved. Multitenancy allows cloud service providers to better utilise computing resources, supporting the development of more exible services to customers based on economy of scale, reducing overheads and infrastructural costs. Nevertheless, there are major challenges in migration from single tenant applications to multi-tenancy. These have not been fully explored in research or practice to date. In particular, the reengineering effort of multi-tenancy in Software-as-a-Service cloud applications requires many complex and important aspects that should be taken into consideration, such as security, scalability, scheduling, data isolation, etc. Our study emphasizes scheduling policies and cloud provisioning and deployment with regards to multi-tenancy issues. We employ CloudSim and MapReduce in our experiments to simulate and analyse multi-tenancy models, scenarios, performance, scalability, scheduling and reliability on cloud platforms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Software-as-a-service (SaaS) multi-tenancy in cloud-based applications helps service providers to save cost, improve resource utilization, and reduce service customization and maintenance time. This is achieved by sharing of resources and service instances among multiple "tenants" of the cloud-hosted application. However, supporting multi-tenancy adds more complexity to SaaS applications required capabilities. Security is one of these key requirements that must be addressed when engineering multi-tenant SaaS applications. The sharing of resources among tenants - i.e. multi-tenancy - increases tenants' concerns about the security of their cloud-hosted assets. Compounding this, existing traditional security engineering approaches do not fit well with the multi-tenancy application model where tenants and their security requirements often emerge after the applications and services were first developed. The resultant applications do not usually support diverse security capabilities based on different tenants' needs, some of which may change at run-time i.e. after cloud application deployment. We introduce a novel model-driven security engineering approach for multi-tenant, cloud-hosted SaaS applications. Our approach is based on externalizing security from the underlying SaaS application, allowing both application/service and security to evolve at runtime. Multiple security sets can be enforced on the same application instance based on different tenants' security requirements. We use abstract models to capture service provider and multiple tenants' security requirements and then generate security integration and configurations at runtime. We use dependency injection and dynamic weaving via Aspect-Oriented Programming (AOP) to integrate security within critical application/service entities at runtime. We explain our approach, architecture and implementation details, discuss a usage example, and present an evaluation of our approach on a set of open source web applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fundamental premise in cloud computing is trying to provide a more sophisticated computing resource sharing capability. In order to provide better allocation, the Dominant Resource Fairness (DRF) approach has been developed to address the "fair resource allocation problem" at the application layer for multi-tenant cloud applications. Nevertheless conventional DRF only considers the interplay of CPU and memory, which may result in over allocation of resources to one tenant's application to the detriment of others. In this paper, we propose an improved DRF algorithm with 3-dimensional demand vector to support disk resources as the third dominant shared resource, enhancing fairer resource sharing. Our technique is integrated with LINUX 'group' controls resource utilisation and realises data isolation to avoid undesirable interactions between co-located tasks. Our method ensures all tenants receive system resources fairly, which improves overall utilisation and throughput as well as reducing traffic in an over-crowded system. We evaluate the performance of different types of workload using different algorithms and compare ours to the default algorithm. Results show an increase of 15% resource utilisation and a reduction of 59% completion time on average, indicating that our DRF algorithm provides a better, smoother, fairer high-performance resource allocation scheme for both continuous workloads and batch jobs.