22 resultados para Temperature measurements.

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A warming world poses challenges for species with temperature-dependent sex determination, including sea turtles, for which warmer incubation temperatures produce female hatchlings. We combined in situ sand temperature measurements with air temperature records since 1850 and predicted warming scenarios from the Intergovernmental Panel on Climate Change to derive 250-year time series of incubation temperatures, hatchling sex ratios, and operational sex ratios for one of the largest sea turtles rookeries globally (Cape Verde Islands, Atlantic). We estimate that light-coloured beaches currently produce 70.10% females whereas dark-coloured beaches produce 93.46% females. Despite increasingly female skewed sex ratios, entire feminization of this population is not imminent. Rising temperatures increase the number of breeding females and hence the natural rate of population growth. Predicting climate warming impacts across hatchlings, male-female breeding ratios and nesting numbers provides a holistic approach to assessing the conservation concerns for sea turtles in a warming world. © 2014 Macmillan Publishers Limited.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of our study was to establish whether rectal temperature recordings in humans could be replaced by a non-invasive skin temperature sensor combined with a heat flux sensor (Double Sensor) located at the forehead to monitor core body temperature changes due to circadian rhythms. Rectal and Double Sensor data were collected continuously for 24h in seven men undertaking strict head-down tilt bed-rest. Individual differences between the two techniques varied between -0.72 and +0.55 degrees C. Nonetheless, when temperature data were approximated by cosinor analysis in order to compare circadian rhythm profiles between methods, it was observed that there were no significant differences between mesor, amplitude, and acrophase (P>0.310). It was therefore concluded that the Double Sensor technology is presently not accurate enough for performing single individual core body temperature measurements under resting conditions at normal ambient room temperature. Yet, it seems to be a valid, non-invasive alternative for monitoring circadian rhythm profiles.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present study examined the validity of tympanic temperature measurements as a predictor of core temperature on the fireground in different environmental conditions. Fiftyone volunteer firefighters participated in the study across four different conditions, the conditions consisted of; 1) passive (i.e., no intervention) cooling in cold ambient temperatures (0-6°C); 2) cooling (through water immersion) in cool ambient temperatures (10-12ºC); 3) cooling (through water immersion) in warm ambient temperatures (21.5°C); and, 4) passive cooling in warm ambient temperatures (22°C). Firefighters wore full structural personal protective clothing while performing common firefighting duties including search and rescue tasks for 20-40 minutes. There was no difference between core and tympanic temperature immediately post-exercise across any condition. However, for all conditions, tympanic temperature dropped significantly faster than core temperature from 0 minutes, and remained significantly lower (p < 0.05) than core temperature from nine to 20 minutes post-training. The results show that there is no consistent difference between core and tympanic temperature during recovery from a simulated firefighting task across a range of different ambient conditions. Agencies should, accordingly, prioritize investigating other practical markers of core temperature as part of a broader heat stress management plan for firefighters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Despite the high demand for industrial applications of magnesium, the forming technology for wrought magnesium alloys is not fully developed due to the limited ductility and high sensitivity to the processing parameters. The processing window for magnesium alloys could be significantly widened if the lower-bound ductility (LBD) for a range of stresses, temperature, and strain rates was known. LBD is the critical strain at the moment of fracture as a function of stress state and temperature. Measurements of LBD are normally performed by testing in a hyperbaric chamber, which is highly specialized, complex, and rare equipment. In this paper an alternative approach to determine LBD is demonstrated using wrought magnesium alloy AZ31 as an example. A series of compression tests of bulge specimens combined with finite element simulation of the tests were performed. The LBD diagram was then deduced by backward calculation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel technique is here presented, based on inverse opal metal oxide structures for the production of high quality macro and meso-porous structures for gas sensing. Taking advantage of a sol-gel templated approach. different mixed semiconducting oxides with high surface area, commonly used in chemical sensing application, were synthesized. In this work we report the
comparison between SnO2 and SnO2:Zn. As witnessed by Scanning and Transmission Electron Microscopy (SEM and TEM) analyses and by Powder x-ray Diffraction (PX RD), highly ordered meso-porous structures were formed with oxide crystalline size never exceeding 20 nm . The filled templates. in form of thick films, were bound to allumina substrate with Pt interdigitated contacts
and Pt heater, through in situ calcination, in order to perform standard electrical characterization. Pollutant gases like CO and NO2 and methanol. as interfering gas, were used for the targeted electrical gas tests. All samples showed low detection limits towards both reducing and oxidizing species in low temperature measurements. Moreover, the addition of high molar percentages of Zn( II) affected the beha viour of electrical response improv ing the se lecti vity of the proposed system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent studies have shown that composite polymer electrolytes, formed by dispersing nanosized ceramic particles in polyether-based electrolytes, have improved ion transport properties as compared to their unfilled analogues. In the present study polymer electrolytes with different loadings of nano-sized ceramic particles (TiO2) and different polymer chemistry and morphology have been investigated. Of special interest are filler induced effects on polymer, solvent and cationic mobility. Partly crystalline polymer electrolytes based on poly(ethylene oxide) have been compared to fully amorphous polymer electrolytes based on a polyether urethane, as well as gel electrolytes based on PMMA. 7Li pfg-NMR, linewidth and spin–spin relaxation times as well as 1H pfg-NMR and spin–spin relaxation times, were measured as a function of temperature and composition. The 1H spin–spin relaxation measurements reveal increased average polymer mobility with the addition of filler up to a maximum at 4 and 8 wt.% TiO2 for the fully amorphous and the partly crystalline electrolytes, respectively. The 7Li linewidth measurements for the fully amorphous system show a broadening of the linewidth with addition of filler. Based on variable temperature measurements this broadening is interpreted as a result of the inhomogeneity introduced by the filler particles. Pulsed field gradient (pfg) diffusion measurements were employed to determine ion and solvent self-diffusion coefficients. In the case of the PMMA-based gel electrolyte and the fully amorphous electrolytes enhanced cation self-diffusion was observed upon addition of TiO2.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Internal combustion engines release about 1/3 of the energy bound in the fuel as exhaust waste gas energy and another 1/3 energy is wasted through heat transfer into the ambient. On the other hand losses through friction are the third largest root cause for energy loss in internal combustion engines. During city driving frictional losses can be of the same size as the effective work, and during cold start these losses are even bigger. Therefore it is obvious to utilise wasted exhaust energy to warm up the engine oil directly. Frictional losses of any engine can be reduced during part load. Sensitivity analyses have been conducted for different concepts that utilise exhaust energy to reduce engine viscosity and friction. For a new system with an exhaust gas/oil heat exchanger the following benefits have been demonstrated:

• Fuel consumption reductions of over 7% measured as an average over 5 NEDC tests
compared to the standard system configuration.
• Significant reductions in exhaust emissions, mainly CO and NOx have been achieved
• Significantly higher oil temperatures during cold start indicate large potential to
reduce engine wear through reduced water condensation in the crankcase
• Fuel consumption reductions of further 3.3% to 4.6% compared to the 7% measured
over the NEDC test can be expected under real world customer usage conditions at
lower ambient temperatures.

Oil temperature measurements and analysis resulted in the idea of a novel system with further potential to reduce fuel consumption. This Oil Viscosity Energy Recovery System (OVER 7™) consists of 3 key features that add significant synergies if combined in a certain way: an oil warm up circuit/bypass, including oil pressure control and Exhaust Gas/Oil Heat Exchanger. The system separates the thermal inertias of the oil in the engine galleries and the oil pan, reduces hydraulic pumping losses, increases the heat transfer from the cylinder head to the oil, and utilises the exhaust heat to reduce oil friction.

The project demonstrated that sensitivity analysis is an important tool for the evaluation of different concepts. Especially for new concepts that include transient heat transfer such a qualitative approach in combination with accurate experiments and measurements can be faster and more efficient in leading to the desired improvements compared to time consuming detailed simulations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Austempered Ductile Iron (ADI) is a type of nodular, ductile cast iron subjected to heat treatments-austenitising and austempering. Whilst machining is conducted prior to heat treatment and offers no significant difficulty, machining post heat treatment is demanding and often avoided. Phase transformation of retained austenite to martensite leading to poor machinability characteristics is a common problem experienced during machining. Study of phase transformations is an investigative study on the factors-plastic strain (εp) and thermal energy (Q) which effect phase transformations during machining. The experimental design consists of face milling grade 1200 at variable Depth of Cut (DoC) range from 1 to 4 mm, coolant on/off, at constant speed, 1992 rpm and feed rate, 0.1 mm/tooth. Plastic strain (εp) and martensite content (M) at fracture point for each grade was evaluated by tensile testing. The effect of thermal energy (Q) on phase transformations was also verified through temperature measurements at DoC 3 and 1 mm using thermocouples embedded into the workpiece. Finally, the amount of plastic strain (εp) and thermal energy (Q) responsible for a given martensite increase (M) during milling was related and calculated using a mathematical function, M=f (εp, Q). The future work of the thesis involves an in-depth study on the new link discovered through this research: mathematical model relating the role of plastic strain and thermal energy in martensite formation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A 200-year time series of incubation temperatures and primary sex ratios for green (Chelonia mydas), hawksbill (Eretmochelys imbricata) and leatherback (Dermochelys coriacea) sea turtles nesting in St. Eustatius (North East Caribbean) was created by combining sand temperature measurements with historical and current environmental data and climate projections. Rainfall and spring tides were important because they cooled the sand and lowered incubation temperatures. Mean annual sand temperatures are currently 31.0. °C (SD. =. 1.6) at the nesting beach but show seasonality, with lower temperatures (29.1-29.6. °C) during January-March and warmer temperatures (31.9-33.3. °C) in June-August. Results suggest that all three species have had female-biased hatchling production for the past decades with less than 15.5%, 36.0%, and 23.7% males produced every year for greens, hawksbills and leatherbacks respectively since the late nineteenth century. Global warming will exacerbate this female-skew. For example, projections indicate that only 2.4% of green turtle hatchlings will be males by 2030, 1.0% by 2060, and 0.4% by 2090. On the other hand, future changes to nesting phenology have the potential to mitigate the extent of feminisation. In the absence of such phenological changes, management strategies to artificially lower incubation temperatures by shading nests or relocating nest clutches to deeper depths may be the only way to prevent the localised extinction of these turtle populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research is a preliminary investigation of the objective measurements ofthelmal comfort and C02 levels as well as subjective user evaluation surveys in six meeting rooms. The ongoing objective measurements were taken via thelmal comfort carts while the surveys evaluated parameters of temperature, lighting, air quality, meeting effectiveness etc. The outcomes are of particular interest since some of the objective measurements clearly to not support those of the users. In fact, the investigation has triggered off further interest in refining questionnaires to develop more precise indicators of 'discomfort'.
Furthelmore, meeting rooms present a challenge when it comes to conditioning spaces (HV AC design) which are sporadic in use and often with high occupancy for short periods. This paper investigates meeting rooms in four different buildings and their conditioning control concepts are discussed in relation to measured results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective
Foot temperature has long been advocated as a reliable noninvasive measure of cardiac output despite equivocal evidence. The aim of this pilot study was to investigate the relationship between noninvasively measured skin temperature and the more invasive core-peripheral temperature gradients (CPTGs), against cardiac output, systemic vascular resistance, serum lactate, and base deficit.

Research methodology
The study was of a prospective, observational and correlational design. Seventy-six measurements were recorded on 10 adults postcardiac surgery. Haemodynamic assessments were made via bolus thermodilution. Skin temperature was measured objectively via adhesive probes, and subjectively using a three-point scale.

Setting
The study was conducted within a tertiary level intensive care unit.

Results
Cardiac output was a significant predictor for objectively measured skin temperature and CPTG (p = .001 and p = .004, respectively). Subjective assessment of skin temperature was significantly related to cardiac output, systemic vascular resistance, and serum lactate (p < .001, respectively).

Conclusions
These results support the utilisation of skin temperature as a noninvasive marker of cardiac output and perfusion. The use of CPTG was shown to be unnecessary, given the parallels in results with the less invasive skin temperature parameters. A larger study is however required to validate these findings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We evaluated the effect of ambient temperatures between 25 and 43°C on the rate of evaporative water loss (EWL) in eight adult Litoria xanthomera (average body mass = 7.3 ± 0.6 g). Frogs were placed in a cylindrical chamber that permitted them to fully conceal their ventral surfaces using a water-conserving posture. Their EWL was 7.1 ± 0.7 mg g–1 h–1 at 25°C and reached 28.0 ± 2.5 mg g–1 h–1 at 43°C. Agar replicas of the frogs were used to evaluate boundary-layer resistances associated with the EWL measurements and, thus, to permit evaluation of cutaneous resistance to vapour diffusion (rc) in live frogs. The rc of L. xanthomera was stable over the temperature range of 25–35°C, averaging about 28 s cm–1, and then declined stepwise with ambient temperatures above 37°C. The highest rc recorded for each individual over the range of temperatures studied averaged 32.0 ± 1.2 s cm–1. The thermolabile nature of rc demonstrates a well developed thermoregulatory control of EWL in this species, a trait very similar in pattern and extent to that previously measured in the closely related Litoria chloris.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ZnO quantum dots were synthesized via a low-temperature solvothermal process without using surfactants. Heat treatment of ZnCl2 and NaOH solutions in tetra-ethylene glycol at 140°C led to the formation of spherical ZnO nanoparticles consisting of the aggregates of uniform-sized quantum dots. The particle size and morphology were characterized using transmission electron microscopy, dynamic light scattering, X-ray diffraction, and Brunauer–Emmett–Teller gas absorption measurements. It was found that the quantum dots in the particles were single crystals of ZnO of ∼5 nm in diameter having the wurtzite structure. The quantum dots showed quantum size effects even in the agglomerated form. The growth mechanism of this new type of ZnO nanoparticles is proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The wetting behavior of water droplets was studied on tunable nanostructured polystyrene (PS) surfaces fabricated by temperature-induced capillary template wetting. The surface morphology of PS varied with the annealing temperature. Contact angle (CA) measurements showed that the wettability of polystyrene surfaces could be tuned from hydrophobic (CA = 104°) to superhydrophobic (CA = 161°) by rendering different morphologies, which could be explained by two distinct wetting modes, i.e., the Wenzel and Cassie–Baxter wetting state. Meanwhile, the critical annealing temperature inducing wetting transition between the Wenzel state and Cassie–Baxter state was obtained. This approach could be easily extended to produce superhydrophobic surfaces on other thermoplastic polymers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ion conducting polymer gels prepared from (ethylene oxide)n grafted methacrylates, ethylene carbonate (EC), gamma butyrolactone (gBL), and lithium hexafluorophosphate are studied by means of nuclear magnetic resonance spectroscopy. This study shows that there are at least two possible lithium sites with different mobility. The lithium-ions with lower mobility dominate at room temperature, but this is changed as the temperature is increased. The NMR results also show that the 7Li spin–spin relaxation time decreases with increasing length of the grafted ethylene oxide side chains, indicating a stronger interaction between the polymer and the Li-ions, and hence, a lower mobility of the Li-ions.