30 resultados para Temperature increase

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Both prokaryotes and eukaryotes express a set of highly conserved proteins in response to external and internal stress. The stressors include tissue trauma,anoxia, heavy metal toxicity, infection, changed salinity, and the mmost characterized, heat shock. The result is an expression of stress proteins or heat shock proteins (HSP's) which lead to protection of protein integrity, and also to tolerance under continued heat stress conditions. The Australian backflip abalone (Haliotis rubra) is found principally in southern coastal water and also in estuarine/bay environments. Esturaine/bay environments have greater fluctuations in environmental conditions, especially those of salinity and water temperature, than they are found along oceanic coasts. Abalone from esturaine/bay and oceanic coastal environments were subjected to either increased temperature (2° C/day for a total of 10°C) or hyposalinity (80% seawater). Esturaine/bay abolone were less affectes than the oceanic animals by temperature increase and also demonstrated the ability to volume regualte 3 h after the initial salinity shock. SDS-PAGE and Western blotting techniques, together with dot blots of total protein, using HSP70 specific antibodies, were used to detect HSP70s in the foot muscle of the animals and indicated an expression of HSP70 in response to heat shock in abalone, but not following hyposalinity shock. RT-PCR yeilded a partial cDNA clone of HSP70 from the foot muscle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Results of permittivity measurements, electromagnetic interference shielding effectiveness, and heat generation due to microwave absorption in conducting polymer coated textiles are reported and discussed. The intrinsically conducting polymer, polypyrrole, doped with anthraquinone-2-sulfonic acid (AQSA) or para-toluene-2-sulfonic acid (pTSA) was applied on textile substrates and the resulting materials were investigated in the frequency range 1–18 GHz. The 0.54 mm thick conducting textile/polypyrrole composites absorbed up to 49.5% of the incident 30–35 W microwave radiation. A thermography station was used to monitor the temperature of these composites during the irradiation process, where absorption was confirmed via visible heat losses. Samples with lower conductivity showed larger temperature increases caused by microwave absorption compared to samples with higher conductivity. A sample with an average sheet resistivity of 150 Ω/sq. showed a maximum temperature increase of 5.27 °C, whilst a sample with a lower resistivity (105 Ω/sq.) rose by 3.85 °C.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Temperature changes in conducting polypyrrole/para-toluene-2-sulphonic acid (PPy/pTSA) coated nylon textiles due to microwave absorption in the 8–9 GHz and 15–16 GHz frequency ranges were obtained by a thermography station during simultaneous irradiation of the samples. The temperature values are compared and related to the amounts of reflection, transmission and absorption obtained with a non-contact free space transmission technique, indicating a relationship between microwave absorption and temperature increase. Non-conductive samples showed no temperature increase upon irradiation irrespective of frequency range. The maximum temperature difference of around 4 °C in the conducting fabrics relative to ambient temperature was observed in samples having 48% absorption and 26.5 ± 4% reflection. Samples polymerized for 60 or 120 min with a dopant concentration of 0.018 mol/l or polymerized for 180 min with a dopant concentration of 0.009 mol/l yielded optimum absorption levels. As the surface resistivity decreased and the reflection levels increased, the temperature increase upon irradiation reduced.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Use of high reflectance surfaces reduces the amount of solar radiation absorbed through building envelopes and urban structures and thus keeping their surfaces cooler. The cooling energy savings by using high reflectance surfaces have been well documented. Higher surface temperatures add to increasing the ambient temperature as convection intensity is higher. Such temperature increase has significant impacts on the air conditioning energy utilization in hot climates. This study makes use of numerical simulations to analyze the effect of commonly used building materials on the air temperature. A part of the existing CBD (Central Business District) area of Singapore was selected for the study. A series of Computational Fluid Dynamics (CFD) simulations have been carried out using the software CFX-5.6. It was found that at low wind speeds, the effect of materials on the air temperature was significant and the temperature at the middle of a narrow canyon increased up to 2.5[degrees]C with the facade material having lower reflectance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Use of high albedo materials reduces the amount of solar radiation absorbed through building envelops and urban structures and thus keeping their surfaces cooler. The cooling energy savings by using high albedo materials have been well documented. Higher surface temperatures add to increasing the ambient temperature as convection intensity is higher. Such temperature increase has significant impacts on the air conditioning energy utilization in hot climates. This study makes use of a parametric approach by varying the temperature of building facades to represent commonly used materials and hence analyzing its effect on the air temperature through a series of CFD (Computational Fluid Dynamics) simulations. A part of the existing CBD (Central Business District) area of Singapore was selected for the study. Series of CFD simulations have been carried out using the software CFX-5.6. Wind tunnel experiments were also conducted for validation. It was found that at low wind speeds, the effect of materials on the air temperature was significant and the temperature at the middle of a narrow canyon increased up to 2.52°C with the façade material having lowest albedo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The evolution of adiabatic shear localization in commercial titanium subjected to heavy cold rolling was investigated. The evolution of the morphology, microhardness, local shear strain, and local temperature increments were systematically studied and estimated. A shear band with about 25m in width was formed and fine nanograins with a range of dimensions varying from 20 to 160nm and had a mean size of about 70nm were observed inside the centre of shear band after 83% cold-rolling. Microhardness test shows that hardness within the shear band is markedly higher than that of the surrounding matrix. The calculated shear strain and maximum temperature increase within the shear band are much higher than that of the overall deformed sample. The initiation of shear localization may depend on geometric perturbation instead of thermal ones.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Survival, oxygen consumption (MO2), total plasma cortisol and glucose levels and gill heat-shock protein 70 (hsp70) expression were measured in 10 and 50 g juvenile Atlantic cod Gadus morhua during an acute temperature increase (2° C h−1) to their critical thermal maximum. Ninety three per cent of the fish in both size classes survived to 24° C; however, mortality was 100% within 15 min of reaching this temperature. The MO2 for both size classes increased significantly with temperature, reaching peak values at 22° C that were c. 2·8-fold those of control (10° C) fish. Resting plasma cortisol and glucose levels were lower in 10 g as compared to 50 g fish. Plasma glucose levels were highly variable in both size classes, and significant increases were only seen at >22° C for the 10 g fish. In contrast, plasma cortisol showed an exponential increase with temperature starting at 16° C in both size classes, and reached maximum levels at 22° C that were 19-fold (10 g fish) and 35-fold (50 g fish) higher than their respective control groups. Both the constitutive (73 kDa) and inducible (72 kDa) isoforms of hsp70 were detected in both size classes using the widely utilized mouse monoclonal antibody. Expression of these isoforms, however, did not change when Atlantic cod were exposed to elevated temperature, and the 72 kDa isoform was not detected using salmonid-specific antibodies. These results indicate that juvenile Atlantic cod are very sensitive to acute increases in water temperature. In addition, they (1) show that MO2and plasma cortisol, but not plasma glucose or gill hsp 70 levels, are sensitive indicators of thermal stress in Atlantic cod and (2) support previous reports that the upper critical temperature for this species is 16° C.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new process of joining tubes from different materials to a bimetallic tube based on a combination of large shear and high hydrostatic pressure is proposed. It results in improved mechanical locking of surface asperities, along with enhanced diffusivity owing to the ultrafine-grained microstructure produced. This is augmented by a temperature increase due to heat release associated with mechanical work. Electron microscopy characterization of the interface and the adjacent regions supports the hypothesis of enhanced interdiffusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The giant crab Pseudocarcinus gigas occurs along the continental shelf break of southern Australia. During the summer alongshore winds cause cooler water to upwell onto the shelf, and the crabs move from deeper water onto the shelf where there is more food. The combination of a preferred thermal niche and a depth-stratified food supply defines the favorable foraging environments that enhance the growth of P. gigas. Climate change is expected to cause a southerly shift of the austral subtropical high-pressure belt, and modelers have predicted more upwelling-favorable winds. The associated increase in the circulation of cooler water across the shelf is likely to provide P. gigas with an increased access to benthic food resources and their growth rate may increase in some regions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The demand to reduce the use of lubricants and increase tool life in sheet metal stamping has resulted in increased research on the sliding contact between the tool and the sheet materials. Unlubricated sliding wear tests for soft carbon steel sliding on D2 tool steel were performed using a pin-on-disk tribometer. The results revealed that temperature has an influencing role in the wear of tool steel and that material transfer between tool and sheet can be minimized at a certain temperature range in sheet metal stamping.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study reports temperature effects on paralarvae from a benthic octopus species, Octopus huttoni, found throughout New Zealand and temperate Australia. We quantified the thermal tolerance, thermal preference and temperature-dependent respiration rates in 1-5 days old paralarvae. Thermal stress (1°C increase h-1) and thermal selection (~10-24°C vertical gradient) experiments were conducted with paralarvae reared for 4 days at 16°C. In addition, measurement of oxygen consumption at 10, 15, 20 and 25°C was made for paralarvae aged 1, 4 and 5 days using microrespirometry. Onset of spasms, rigour (CTmax) and mortality (upper lethal limit) occurred for 50% of experimental animals at, respectively, 26.0±0.2°C, 27.8±0.2°C and 31.4±0.1°C. The upper, 23.1±0.2°C, and lower, 15.0±1.7°C, temperatures actively avoided by paralarvae correspond with the temperature range over which normal behaviours were observed in the thermal stress experiments. Over the temperature range of 10°C-25°C, respiration rates, standardized for an individual larva, increased with age, from 54.0 to 165.2nmol larvae-1h-1 in one-day old larvae to 40.1-99.4nmol h-1 at five days. Older larvae showed a lesser response to increased temperature: the effect of increasing temperature from 20 to 25°C (Q10) on 5 days old larvae (Q10=1.35) was lower when compared with the 1 day old larvae (Q10=1.68). The lower Q10 in older larvae may reflect age-related changes in metabolic processes or a greater scope of older larvae to respond to thermal stress such as by reducing activity. Collectively, our data indicate that temperatures >25°C may be a critical temperature. Further studies on the population-level variation in thermal tolerance in this species are warranted to predict how continued increases in ocean temperature will limit O. huttoni at early larval stages across the range of this species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

in situ high-temperature X-ray diffraction and thermal gravimetric- differential thermal analysis on room-temperature powder, as well as X-ray diffraction, Raman spectroscopy, and transmission electron microscopy on quenched powder, were applied to study crystal structure and phase transformations in Ba2Bi0.1Sc0.2Co 1.7O6-x (BBSC). Heating BBSC in air to over 800 °C produces a pure cubic phase with space group Fm3m (no. 225), and cooling down below 800 °C leads to a mixture of three noncubic phases including an unknown phase between 200 and 650 °C, a 2H hexagonal BaCoO3 with space group P63/mmc (no. 194) between 600 and 800 °C, and an intermediate phase at 800 °C. These three phases exist concurrently with the major cubic phase. The weight gain and loss between 300 and 900 °C suggest the occurrence of cobalt reduction, oxidation, and disproportion reactions with dominant reduction reaction at above 600 °C. The thermal expansion of BBSC was also examined by dilatometry. BBSC has a highly temperature-dependent thermal expansion coefficient which relates well with its structure evolution. Furthermore, the oxygen reduction reaction (ORR) of BBSC was probed by symmetrical cell and three-electrode configurations. The presence of hexagonal phase at 700 °C rarely affects the ORR performance of BBSC as evidenced by a slight increase of its area-specific resistance (ASR) value following 48 h of testing in this three-electrode configuration. This observation is in contrast to the commonly held point of view that noncubic phase deteriorates performance of perovskite compounds (especially in oxygen transport applications). Moreover, cathodic polarization treatment, for example, current discharge from BBSC (tested in three-electrode configuration), can be utilized to recover the original ORR performance. The cubic structure seems to be retained on the cathodic polarization - the normal cathode operating mode in fuel cells. Stable 72-h performance of BBSC in cathodic polarization mode further confirms that despite the presence of phase impurities, BBSC still demonstrates good performance between 500 and 700 °C, the desired intermediate operating temperature in solid oxide fuel cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To investigate the temporal relationship between the monthly count of salmonellosis notifications and the monthly average temperature in New Zealand during the period 1965–2006.

Methods: A negative binomial regression model was used to analyse monthly average ambient temperature and salmonellosis notifications in New Zealand between 1965 and 2006.

Results: A 1°C increase in monthly average ambient temperature was associated with a 15% increase in salmonellosis notifications within the same month (IRR 1.15; 95% CI 1.07 – 1.24).

Conclusion: The positive association found in this study between temperature and salmonellosis notifications in New Zealand is consistent with the results of studies conducted in other countries. New Zealand is projected to experience an increase in temperature due to climate change. Therefore, all other things being equal, climate change could increase salmonellosis notifications in New Zealand.

Implications: This association between temperature and salmonellosis should be considered when developing public health plans and climate change adaptation policies. Strategically, existing food safety programs to prevent salmonellosis could be intensified during warmer periods. As the association was strongest within the same month, focusing on improving food handling and storage during this time period may assist in climate change adaptation in New Zealand.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The warming of coastal oceans due to climate change is increasing the overwinter survival of tropical fishes transported to temperate latitudes by ocean currents. However, the processes governing early post-arrival mortality are complex and can result in minimum threshold temperatures for overwinter survival, which are greater than those predicted based upon physiological temperature tolerances alone. This 3.5 mo laboratory study monitored the early performance of a tropical damselfish Abudefduf vaigiensis that occurs commonly during austral summer along the SE Australian coast, under nominal summer and winter water temperatures, and compares results with a co-occurring year-round resident of the same family, Parma microlepis. Survivorship, feeding rate, growth and burst swimming ability (as a measure of predator escape ability) were all reduced for the tropical species at winter water temperatures compared to those in summer, whereas the temperate species experienced no mortality and only feeding rate was reduced at colder temperatures. These results suggest that observed minimum threshold survival temperatures may be greater than predicted by physiology alone, due to lowered food intake combined with increased predation risk (a longer time at vulnerable sizes and reduced escape ability). Overwinter survival is a significant hurdle in pole-ward range expansions of tropical fishes, and a better understanding of its complex processes will allow for more accurate predictions of changes in biodiversity as coastal ocean temperatures continue to increase due to climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As-cast AZ80 Mg alloy contains α-Mg, partially divorce eutectic of α and γ (Mg 17Al 12), fully divorce eutectic of α and γ, and lamellar eutectic of α and γ phases. During homogenization, second phase (γ-Mg 17Al 12) gets dissolved can change the mechanical properties. Therefore, the aim of the present work is to bring out the kinetics of dissolution of γ phase and evaluate its effect on mechanical properties. Microstructure evolution during homogenization was investigated as a function of time for 0.5 to 100 h and at the temperatures of 400° and 439°C. In as-cast state, this material was found to contain 70% α-Mg and 30% eutectic phase. With increasing homogenization time, dissolution of lamellar eutectic occurs first which is followed by dissolution of fully divorce eutectic and partially divorce eutectic. The dissolution kinetics of γ phase was analyzed based on the decrease in its volume fraction as a function of time. The time exponent for dissolution was found to be 0.38 and the activation energy for the dissolution of γ phase was found to be 84.1 kJ/mol. This dissolution of γ phase leads to decrease in hardness and tensile strength with increase in homogenization time.