12 resultados para Temperature field

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Synthetic graphite–phenolic nanocomposites were designed and synthesized with a compositional gradient which is shown to influence transient temperature fields during rapid temperature changes. Such nanocomposites were fabricated using a compression moulding technique, and thermal conductivity and heat capacity of nanocomposites were experimentally determined using a modified transient plane source technique over a wide temperature range from 253.15 to 373.15 K. The effects of four compositional gradient configurations on the transient temperature field across the thickness of a nanocomposite plate, at a high imposed temperature, was investigated. The transient time and temperature fields in nanocomposite structures were highly affected by the compositional gradient configurations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The final mechanical properties of hot stamped components are affected by many process and material parameters due to the multidisciplinary nature of this thermal-mechanical-metallurgical process. The phase transformation, which depends on the temperature field and history, determines the final microstructure and consequently the final mechanical properties. Tailored hot stamping parts - where the cooling rates are locally chosen to achieve structures with graded properties - has been increasingly adopted in the automotive industry. In this case, the robustness of final part properties is more critical than in the conventional hot stamping parts, where the part is fully quenched. In this study, a wide range of input parameters in a generalized hot stamping model have been investigated, examining the effect on the temperature history and resulting final material properties. A generic thermo-mechanical finite element model of hot stamping was created and a modified phase transformation model, based on Scheil's additive principle, has been applied. The comparison between modeling and experiments shows that the modified phase transformation model coupled with the incubation time provides higher accuracy on the simulation of transformation kinetics history. The robustness of four conditions relevant to tailored hot stamping was investigated: heated tooling (with low and high tool conductance), air cooling, and conventional hot stamping. The results show the high robustness of the conventional hot stamping compared to tailored hot stamping, with respect to the stamped component's final material properties (i.e. phase fraction and hardness). Furthermore, tailored hot stamping showed higher robustness when low conductivity tools are used relative to high conductivity tools.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper firstly expounds that the reheat-regenerative Rankine power cycle is a suitable cycle for the parabolic trough collector, a popular kind of collector in the power industry. In a thermal power cycle, the higher the temperature at which heat is supplied, the higher the efficiency of the cycle. On the other hand, for a given kind of collector at the same exiting temperature, the higher the temperature of the fluid entering the collector, the lower the efficiency of the collector. With the same exiting temperature of the solar field and the same temperature differences at the hottest end of the superheater/reheater and at the pinch points in the heat exchangers (e.g., the boiler) in the cycle, the efficiencies of the system are subject to the temperature of the fluid entering the collector or the saturation temperature at the boiler. This paper also investigates the optimal thermal and exergetic efficiencies for the combined system of the power cycle and collector. To make most advantage of the collector, the exiting fluid is supposed to be at the maximum temperature the collector can harvest. Hence, the thermal and exergetic efficiencies of the system are related to the saturation temperature at the boiler here.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fast-ion conduction has been observed in the iodide and bromide salts of 1-methyl-3-ethylimidazolium at ambient temperatures. The melting point of these two compounds is above 350 K and even at 273 K the ionic conductivity in the solid-state is greater than 10−3S cm−1. Cation diffusion coefficients have been measured using fringe field gradient and/or pulse field gradient 1H NMR techniques, which indicated cation diffusion coefficients of the order of 10−10 m2 s−1 in the solid-state. Remarkably, these values are up to an order of magnitude higher than the cation diffusion coefficient in the supercooled liquid at 293 K. The activation energy for diffusion in the solid-state is extremely small, as is typical of solid-state fast-ion conductors and indicates a change in transport mechanism from the melt to the crystal. The inability to detect an 127I signal together with the modelling of the conductivity using the Nernst–Einstein equation suggests that the solid-state conduction is primarily due to cation diffusion. The solid-state fast-ion conduction is most likely related to vacancy diffusion along the cation layers in the crystal. The temperature dependence of the NMR signal intensity indicates that the number of mobile species is increasing with increasing temperature with an activation energy of approximately 20–30 kJ mol−1.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of high pressure on molecular arrangment in liquid crystals were observed by optical measurements on two nematogens. It was possible to deduce how volume varies as a factor of temperature and pressure and how nematic order parameter changes under the influence of high pressure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth rate of cultured mammalian cells can be influenced by chemical and physical methods such as electromagnetic fields (EMF), light, temperature and plasma. These physical methods have a number of well documented effects on mammalian cells including modification of gene expression, cell cycle, invasion, motility, cell viability, proliferation, apoptosis and mammosphere numbers. A study of the existing literature confirms that the impact of physical method on mammalian cells depends on the cell type, culture environment, exposure time, frequency, wave shape, and amount of dose. The modification of cell proliferation and apoptosis is necessary for cells products, tissue engineering, and therapy. In this article, we reviewed the impact of four physical methods on the growth rate and viability of cells. Plasma is the best method among fours because we can get desired result ranging from increasing cell proliferation to inducing apoptosis depending on the dose.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The alloy Ni-Mn-Ga aroused great interest for application as a magnetic shape memory (MSM) material. This effect is caused by reorientation of twin variants by an external magnetic field. So far, most of the experiments were concentrated on single crystals. But, the MSM effect can also be realised in polycrystals which can be prepared much more efficiently. Here, polycrystalline samples were prepared by directional solidification with a <100> fibre texture of the high temperature cubic austenitic phase parallel to the heat flow. Afterwards, a heat treatment was applied for chemical homogenisation and stress relaxation in the austenitic state. Then the samples were heated up to the austenitic state and cooled down under load. The microstructure was analysed by Electron Back Scatter Diffraction (EBSD) before and after that treatment. Mechanical training at room temperature and 40°C was tracked by recording stress-strain curves. By increasing the number of training cycles the strain also increases. The influence of different training temperatures was investigated on samples with different grain sizes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In response to handling or other acute stressors, most mammals, including humans, experience a temporary rise in body temperature (T b). Although this stress-induced rise in T b has been extensively studied on model organisms under controlled environments, individual variation in this interesting phenomenon has not been examined in the field. We investigated the stress-induced rise in T b in free-ranging eastern chipmunks (Tamias striatus) to determine first if it is repeatable. We predicted that the stress-induced rise in T b should be positively correlated to factors affecting heat production and heat dissipation, including ambient temperature (T a), body mass (M b), and field metabolic rate (FMR). Over two summers, we recorded both T b within the first minute of handling time (T b1) and after 5 min of handling time (T b5) 294 times on 140 individuals. The mean ∆T b (T b5 – T b1) during this short interval was 0.30 ± 0.02°C, confirming that the stress-induced rise in T b occurs in chipmunks. Consistent differences among individuals accounted for 40% of the total variation in ∆T b (i.e. the stress-induced rise in T b is significantly repeatable). We also found that the stress-induced rise in T b was positively correlated to T a, M b, and mass-adjusted FMR. These results confirm that individuals consistently differ in their expression of the stress-induced rise in T b and that the extent of its expression is affected by factors related to heat production and dissipation. We highlight some research constraints and opportunities related to the integration of this laboratory paradigm into physiological and evolutionary ecology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reliable, safe and high performance solid electrolytes are a critical step in the advancement of high energy density secondary batteries. In the present work we demonstrate a novel solid electrolyte based on the organic ionic plastic crystal (OIPC) triisobutyl(methyl)phosphonium bis(fluorosulfonyl)imide (P1444FSI). With the addition of 4 mol% LiFSI, the OIPC shows a high conductivity of 0.26 mS cm-1 at 22 °C. The ion transport mechanisms have been rationalized by compiling thermal phase behaviour and crystal structure information obtained by variable temperature synchrotron X-ray diffraction. With a large electrochemical window (ca. 6 V) and importantly, the formation of a stable and highly conductive solid electrolyte interphase (SEI), we were able to cycle lithium cells (LiLiFePO4) at 30 °C and 20 °C at rates of up to 1 C with good capacity retention. At the 0.1 C rate, about 160 mA h g-1 discharge capacity was achieved at 20 °C, which is the highest for OIPC based cells to date. It is anticipated that these small phosphonium cation and [FSI] anion based OIPCs will show increasing significance in the field of solid electrolytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon coated LiFe0·4Mn0·6PO4 (LiFe0·4Mn0·6PO4/C) was synthesised using high energy ball milling and annealing processes. The starting materials of Li2C2O4, FeC2O4.2H2O, MnC2O4.2H2O, NH4H2PO4 were firstly milled for 40 h, and followed by further milling for 5 h after adding glucose solution. The milled sample was heated at different temperatures (550, 600, 650 and 700°C) for 10 h to produce LiFe0·4Mn0·6PO4/C composites. The structure and morphology of the samples were investigated using X-ray diffraction, field emission scanning electron microscopy, and high resolution electron microscopy. The phase of samples annealed at 550 and 600°C mainly consists of olivine type LiFePO4, but a small amount of Fe2P impurity phase is formed in the samples annealed at 650 and 700°C. Electrochemical analysis results show that LiFe0·4Mn0·6PO4/C synthesised at 600°C exhibits the best performance with the initial discharge capacity of 128 mAh g-1 at 0·1 C, and 109 mAh g-1 at 1 C after 500 cycles. The LiFe0·4Mn0·6PO4/C exhibits excellent electrochemical properties for high energy density lithium ion batteries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last 30 years, nanoparticle-based medicine has received tremendous attention due to its advances with smart therapeutics and less toxicity. Few nanomedicine products have been approved for commercial use in the clinic (such as Doxil®, Ambraxane®…). Nanomedicine research is still at its early stage and the preparation of nanoparticles must be carefully considered. Systems involving further increased supersaturation, either via solvent evaporation, temperature reduction or anti-solvent mixture, were suggested to be capable of inducing nanoprecipitation (NPT). Since this technique is straight-forward, fast and easy to duplicate in practice, it is highly preferred and recommended. In this review, the process of NTP was described and discussed in detail. Factors that affect the encapsulation efficiency, the nanoparticle size, the morphology and the stability of nanoparticles prepared by NTP were described. This process is one of the most preferable processes for preparing solid nano-protein due to their elegant techniques that preserve the bioactivity of proteins. Although the production of nanoparticles by this process has not been applied in the pharmaceutical industry due to the organic solvent issue, the production equipment for large-scale has been marketed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Temperature has profound effects on physiology of ectothermic animals. However, the effects on temperature variation on behavioral traits are poorly studied in contrast to physiological endpoints. This may be important as even small differences in temperatures have large effects on physiological rates including overall metabolism, and behavior is known to be linked to metabolism at least in part. The primary aim of this study was to determine the effects of ambient temperature on boldness responses of a species of fish commonly used in behavioral experiments, the Siamese fighting fish (Betta splendens). At 26°C, subjects were first examined for baseline behaviors over three days, using three different (but complementary) 'open field' type assays tested in a fixed order. Those same fish were next exposed to either the same temperature (26°C) or a higher temperature (30°C) for 10days, and then the same behavioral assays were repeated. Those individuals exposed to increased temperatures reduced their latency to leave the release area (area I), spent more time in area III (farthest from release area), and were more active overall; together we infer these behaviors to reflect an increase in general 'boldness' with increased temperature. Our results add to a limited number of studies of temperature effects on behavioral tendencies in ectotherms that are evident even after some considerable acclimation. From a methodological perspective, our results indicate careful temperature control is needed when studying behavior in this and other species of fish.