3 resultados para Tannins

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Digestive juice from the herbivorous gecarcinid land crabs Gecarcoidea natalis and Discoplax hirtipes exhibited total cellulase activity and activities of two cellulase enzymes; endo-ß-1,4-glucanase and ß-1,4-glucosidase. These enzymes hydrolysed native cellulose to glucose. The digestive juice of both species also contained laminarinase, licheninase and xylanase, which hydrolysed laminarin, lichenin and xylan, respectively, to component sugars. The pH optima of ß-1,4-glucosidase, endo-ß-1,4-glucanase and total cellulase from G. natalis were 4–5.5, 5.5 and 5.5–7, respectively. In the digestive juice from D. hirtipes, the corresponding values were 4–7, 5.5–7 and 4–9, respectively. The pH of the digestive juice was 6.69±0.03 for G. natalis and 6.03±0.04 for D. hirtipes and it is likely that the cellulases operate near maximally in vivo. In G. natalis, total cellulase activity and endo-ß-1,4-glucanase activity were higher than in D. hirtipes, and the former species can thus hydrolyse cellulose more rapidly. ß-1,4-glucosidase from G. natalis was inhibited less by glucono-D-lactone (Ki=11.12 mmol l-1) than was the ß-1,4-glucosidase from D. hirtipes (Ki=4.53 mmol l-1). The greater resistance to inhibition by the ß-1,4-glucosidase from G. natalis may contribute to the efficiency of the cellulase system in vivo by counteracting the effects of product inhibition and possibly dietary tannins. The activity of ß-1,4-glucosidase in the digestive juice of D. hirtipes was higher than that of G. natalis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Storage of adzuki beans and other pulse grains causes biochemical and physical changes that affect the hydration properties of the beans. This affects the quality of products made from the beans such as the Japanese bean paste “ann.” Storage, particularly under unfavourable conditions, leads to the “hard shell” phenomenon, where beans fail to imbibe water when soaked and remain hard, and the “hard-to-cook” phenomenon where the seeds hydrate normally, but the cotyledon fails to hydrate and soften during cooking. The hard shell phenomenon is attributable to impermeability of the seed coat to water, which is due to biochemical changes in the seed coat, such as the formation of protein-tannin complexes, and biophysical changes such as reduction in size or closure of the straphiole aperture in the hilum area—the main area for water entry into the adzuki bean. The hard-to-cook phenomenon is due to changes in the cotyledon tissue, which include formation of insoluble pectinates, lignification of the cell wall and middle lamella, interaction of condensed tannins with proteins and starch, and changes to the structure and functionality of the cellular proteins and starch.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An extracellular tannase (E.C. 3.1.1.20) producing fungal strain was isolated from soil and identified as Aspergillus sp MIK23. Out of various plant extracts, Terminalia chebula powder (TCP) in the optimized medium enhanced enzyme production. Maximum yield of tannase (3 IU ml-1) was obtained with glucose (10 g/L), urea (2 g/L), and yeast extract (2.5 g/L) when inoculated with 10% inoculum in 48 h. An initial medium at pH 6.0 and a cultivation temperature of 37 0C was found to be optimum for enzyme production. Metal ions Mg2+, Zn2+, Ca2+, Cu2+ and Cd2+ did not improve enzyme activity, whereas, Ca2+, Fe2+ and Hg2+ repressed enzyme activity. The enzyme was purified using ammonium sulfate precipitation followed by Q-sepharose ion-exchange chromatography. The enzyme was purified to 42-fold with an overall recovery of 20. The pH and temperature optima of the purified tannase were found to be 7.0 and 37°C, respectively.