4 resultados para Tank system

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The majority of on-site sewage management systems in Australia fail to perform to expectations. About 60% to 80% of on-site systems reportedly fail to produce acceptable effluent quality, and there is an increaed concern about the risks associated with public health and environmental pollution. In Victoria, a large proportion of septic tank installations have been reported to discharge highly polluted waste to drains and streams. Users, often considered by regulators as operators, have to bear the costs of upgrade/replacement of their old systems to meet stringent water quality guidelines. Some of the common problems include clogging of the disposal fields due to solids and organic overloading and surfacing of highly polluted effluent. Large land application area is subsequently required for irrigating the effluent and/or installation of upgraded disposal fields.
This paper investigates the effectiveness of various types of textile and plastic media, in polishing primary tank effluent, downstream from a typical two-compartment septic tank system. Results to date show that high biochemical oxygen demand removal rates are achieved from the textile and plastic media (up to 86% and 83% respectively). At these removal levels, the performance of a combined conventional septic tank system and plastic/textile filters is comparable to that of an advanced aerated wastewater treatment system. This approach, subject to further investigation, could provide a less costly upgrade.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Due to long-term drought conditions coupled with the apparent influence of global warming, compounding water loss has been a very serious issue across the vast majority of the Australian continent. During these drought conditions, the evaporative effect outweighs the amount of precipitation being received on a year to year basis. Several methods have been introduced in recent history to inhibit the amount of evaporative loss from various types of water bodies such as the application of thin layer chemical films (monolayers). A series of solvent, solid and suspension derived prototype monolayers, based on ethylene glycol monooctadecyl ether (C18E1), are examined in this current study as an approach to eliminate the problems seen to occur with the previous types of monolayers. This research evaluates the fundamental effect of wind and wave based activity upon these prototype monolayers in an atmospherically controlled enclosure positioned over a large extended water tank using real-time environmental measurements. Selected performance results for the prototype monolayers as measured within the enclosed water tank were compared to results measured from a control monolayer film based on a commonly used octadecanol suspension film. The results show that under varying wind and wave conditions the prototype monolayers inhibit evaporation at a level similar to or better than the octadecanol standard, even when delivered at lower raw dosages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recirculating aquaculture systems (RAS) are essential for the reduction in fresh water usage as well as the discharge of nutrients along with aquaculture effluents. A RAS consisting of an anoxic reactor, a membrane bioreactor (MBR) and a UV-disinfection unit was used to process 10,000 L/d of aquaculture effluent providing high-quality treated water for recirculation to a Barramundi fish culture. The system maintained low levels of nitrate (<20 mg/L), nitrite (<3 mg/L) and ammonia (<0.6 mg/L) in the fish tank. Permeate from the membrane that was recirculated to the fish tank contained <21 mg/L of nitrate, <2 mg/L of nitrite and 0 mg/L of ammonia. However, the rate of fouling of the membrane in the MBR was around 1.47 kPa/d, and the membrane in the MBR required cleaning due to fouling after 16 days. Cleaning of the membrane was initiated when the TMP reached around 25 to 30 kPa. In order to reduce the rate of fouling, 500 mg of powdered activated carbon (PAC) per litre of MBR volume was introduced, which decreased the rate of fouling to 0.90 kPa/d. Cleaning of membrane was needed only after 31 days of operation while maintaining the treated effluent quality. Thus the frequency of cleaning could be halved due to the introduction of PAC into the MBR.