6 resultados para TRACERS

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface water contamination by human faecal wastes is a widespread hazard for human health. Faecal indicator bacteria (FIB) are the most widely used indicators to assess surface water quality but are less-human-specific and have the potential to survive longer and/or occur naturally in tropical areas. In this study, 13 wastewater chemicals (chloride, boron, orthosphophate, detergents as methylene blue active substances, cholesterol, cholestanol, coprostanol, diethylhexyl phthalate, caffeine, acetaminophen, ibuprofen, sucralose and saccharin) were investigated in order to evaluate tracers for human faecal and sewage contamination in tropical urban catchments. Surface water samples were collected at an hourly interval from sampling locations with distinct major land uses: high-density residential, low-density residential, commercial and industrial. Measured concentrations were analysed to investigate the association among indicators and tracers for each land-use category. Better correlations were found between different indicators and tracers in each land-use dataset than in the dataset for all land uses, which shows that land use is an important determinant of drain water quality. Data were further segregated based on the hourly FIB concentrations. There were better correlations between FIB and chemical tracers when FIB concentrations were higher. Therefore, sampling programs must be designed carefully to take the time of sampling and land use into account in order to effectively assess human faecal and sewage contamination in urban catchments. FIB is recommended as the first tier in assessment of surface water quality impairment and chemical tracers as the second tier. Acetaminophen and coprostanol are recommended as chemical tracers for high-density residential areas, while chloride, coprostanol and caffeine are recommended for low-density residential areas.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The southern rock lobster Jasus edwardsii is a commercial species that has benefited from the complete protection offered by no-take reserves, with higher abundances and larger animals recorded in reserves than in adjacent fished areas. What remains unclear is whether there is any change in the diet of lobsters in reserves, for example, as a result of increased intraspecific competition for food. We used combined chemical tracers to examine the diet of lobsters in fished and reserve areas in 2 bioregions in eastern Tasmania. δ15N values of lobsters were richer in fished than in reserve areas, indicating that lobsters eat a greater proportion of food items from higher trophic levels in fished areas. Mixing models suggest that ascidians, sea urchins and the turbinid gastropod were all important food sources for lobsters, but the importance of these food items differed between bioregions. This spatial variability may suggest that the small size of the reserve in one bioregion is inadequate at ensuring the diet of lobsters is protected from fishing pressure. Fatty acid profiles of lobsters supported the importance of these food sources to lobsters. Differences between bioregions, or inside and outside of reserves, were not apparent using fatty acids. The present study highlights that lobster fishing has the capacity to alter the trophic status of prey for generalist predators and suggests that fatty acid analyses may be limited in detecting changes in the dietary composition of such generalist feeders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[1] As part of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA)-Cooperative LBA Airborne Regional Experiment (CLAIRE) 2001 campaign in July 2001, separate day and nighttime aerosol samples were collected at a ground-based site in Amazonia, Brazil, in order to examine the composition and temporal variability of the natural “background” aerosol. We used a high-volume sampler to separate the aerosol into fine (aerodynamic diameter, AD < 2.5 μm) and coarse (AD > 2.5 μm) size fractions and quantified a range of organic compounds in methanolic extracts of the samples by a gas chromatographic-mass spectrometric technique. The carbon fraction of the compounds could account for an average of 7% of the organic carbon (OC) in both the fine and coarse aerosol fractions. We observed the highest concentrations of sugars, sugar alcohols, and fatty acids in the coarse aerosol samples, which suggests that these compounds are associated with primary biological aerosol particles (PBAP) observed in the forest atmosphere. Of these, trehalose, mannitol, arabitol, and the fatty acids were found to be more prevalent at night, coinciding with a nocturnal increase in PBAP in the 2–10 μm size range (predominantly yeasts and other small fungal spores). In contrast, glucose, fructose, and sucrose showed persistently higher daytime concentrations, coinciding with a daytime increase in large fungal spores, fern spores, pollen grains, and, to a lesser extent, plant fragments (generally >20 μm in diameter), probably driven by lowered relative humidity and enhanced wind speeds/convective activity during the day. For the fine aerosol samples a series of dicarboxylic and hydroxyacids were detected with persistently higher daytime concentrations, suggesting that photochemical production of a secondary organic aerosol from biogenic volatile organic compounds may have made a significant contribution to the fine aerosol. Anhydrosugars (levoglucosan, mannosan, galactosan), which are specific tracers for biomass burning, were detected only at low levels in the fine aerosol samples. On the basis of the levoglucosan-to-OC emission ratio measured for biomass burning aerosol, we estimate that an average of ∼16% of the OC in the fine aerosol was due to biomass burning during CLAIRE 2001, indicating that the major fraction was associated with biogenic particles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A drift and pumpback experiment was conducted in a brackish water sandfill. The sandfill was reclaimed from the sea in the eastern part of Singapore and contains sands with low organic and clay/silt contents. The high salinity in the ground water precludes the use of chloride and bromide as tracers in such an environment, and a field experiment was conducted to assess the viability of using fluorescein as a tracer in brackish water aquifers. Nitrate was used as a second tracer to serve as a check. Initial laboratory studies showed that fluorescence was unaffected over the range of electrical conductivity and pH of the ground water. Results from the field experiment show that fluorescein appears to behave conservatively.