41 resultados para Symmetric matrices

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

One approach to the detection of curves at subpixel accuracy involves the reconstruction of such features from subpixel edge data points. A new technique is presented for reconstructing and segmenting curves with subpixel accuracy using deformable models. A curve is represented as a set of interconnected Hermite splines forming a snake generated from the subpixel edge information that minimizes the global energy functional integral over the set. While previous work on the minimization was mostly based on the Euler-Lagrange transformation, the authors use the finite element method to solve the energy minimization equation. The advantages of this approach over the Euler-Lagrange transformation approach are that the method is straightforward, leads to positive m-diagonal symmetric matrices, and has the ability to cope with irregular geometries such as junctions and corners. The energy functional integral solved using this method can also be used to segment the features by searching for the location of the maxima of the first derivative of the energy over the elementary curve set.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Design of locally optimal fault tolerant manipulators has been recently addressed via using the constraints of the desired null space for the Jacobian matrix of the manipulators. In the present paper the Jacobian matrices for optimal fault tolerance are presented based on geometric properties of column vectors instead of the null space. They are equally fault tolerant to a single joint failure from the worst-case relative manipulability and worst-case dexterity points of view. The optimality is achieved through a symmetric distribution of points on spheres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider all purely magnetic, locally rotationally symmetric (LRS) spacetimes. It is shown that such spacetimes belong to either LRS class I or III by the Ellis classification. For each class the most general solution is found exhibiting a disposable function and three parameters. A Segré classification of purely magnetic LRS spacetimes is given together with the compatibility requirements of two general energy–momentum tensors. Finally, implicit solutions are obtained, in each class, when the energy–momentum tensor is a perfect fluid.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In previous paper, we introduced a concept of multi-soft sets and used it for finding reducts. However, the comparison of the proposed reduct has not been presented yet, especially with rough-set based reduct. In this paper, we present matrices representation of multi-soft sets. We define AND and OR operations on a collection of such matrices and apply it for finding reducts and core of attributes in a multi-valued information system. Finally, we prove that our proposed technique for reduct is equivalent to Pawlak’s rough reduct.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we report on the preparation and cell culture performance of a novel fibrous matrix that has an interbonded fiber architecture, excellent pore interconnectivity, and controlled pore size and porosity. The fibrous matrices were prepared by combining melt-bonding of short synthetic fibers with a template leaching technique. The microcomputed tomography and scanning electron microscopy imaging verified that the fibers in the matrix were highly bonded, forming unique isotropic pore architectures. The average pore size and porosity of the fibrous matrices were controlled by the fiber/template ratio. The matrices having the average pore size of 120, 207, 813, and 994 mm, with the respective porosity of 73%, 88%, 96%, and 97%, were investigated. The applicability of the matrix as a three-dimensional (3D) tissue scaffold for cell culture was demonstrated with two cell lines, rat skin fibroblast and Chinese hamster ovary, and the influences of the matrix porosity and surface area on the cell culture performance were examined. Both cell lines grew successfully in the matrices, but they showed different preferences in pore size and porosity. Compared with two-dimensional tissue culture plates, the cell number on 3D fibrous matrices was increased by 97.27% for the Chinese hamster ovary cells and 49.46% for the fibroblasts after 21 days of culture. The fibroblasts in the matrices not only grew along the fiber surface but also bridged among the fibers, which was much different from those on two-dimensional scaffolds. Such an interbonded fibrous matrix may be useful for developing new fiber-based 3D tissue scaffolds for various cell culture applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thesis established a stable three-dimensional fibrous tissue scaffold that has controlled pore structure and inter-bonded fibrous structure, and also examined the effects of the 3D fibrous matrices and functional surfaces including nano-scale topography, bioactive CaP coating and antibacterial treatment on the cell growth behavior for tissue engineering application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A potential severe plastic deformation process known as axi-symmetrical forward spiral extrusion (AFSE) has been studied numerically and experimentally. The process is based on the extrusion of cylindrical samples through a die with engraved spiral grooves in a near zero shape change manner. The process was simulated using a three dimensional finite element (FE) model that has been developed using commercial software, ABAQUS. In order to verify the finite element results, hot rolled and annealed samples of the alloy were experimentally processed by AFSE. The required extrusion forces during the process were estimated using the FE model and compared with the experimental values. The reasonable agreement between the FE results and experimental data verified the accuracy of the FE model. The numerical results indicate the linear strain distribution in the AFSE sample is only valid for a core concentric while the strain distribution in the vicinity of the grooves is non axi-symmetric. The FE simulation results from this research allows a better understanding of AFSE kinematics especially near the grooves, the required extrusion force and the resultant induced strain distribution in the sample. To compare the mechanical properties of the Mg-1.75Mn alloy before and after the process, a micro shear punch test was used. The tests were performed on samples undergoing one and four passes of AFSE. After four passes of AFSE, it was observed that the average shear strength of the alloy has improved by about 21%. The developedfinite element model enables tool design and material flow simulation during the process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present techniques for inverting sparse, symmetric and positive definite matrices on parallel and distributed computers. We propose two algorithms, one for SIMD implementation and the other for MIMD implementation. These algorithms are modified versions of Gaussian elimination and they take into account the sparseness of the matrix. Our algorithms perform better than the general parallel Gaussian elimination algorithm. In order to demonstrate the usefulness of our technique, we implemented the snake problem using our sparse matrix algorithm. Our studies reveal that the proposed sparse matrix inversion algorithm significantly reduces the time taken for obtaining the solution of the snake problem. In this paper, we present the results of our experimental work.