9 resultados para Swimming Performance

em Deakin Research Online - Australia


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The importance of studying individual variation in locomotor performance has long been recognized as it may determine the ability of an organism to escape from predators, catch prey or disperse. In ectotherms, locomotor performance is highly influenced by ambient temperature (Ta), yet several studies have showed that individual differences are usually retained across a Ta gradient. Less is known, however, about individual differences in thermal sensitivity of performance, despite the fact that it could represent adaptive sources of phenotypic variation and/or additional substrate for selection to act upon. We quantified swimming and jumping performance in 18 wild-caught tropical clawed frogs (Xenopus tropicalis) across a Ta gradient. Maximum swimming velocity and acceleration were not repeatable and individuals did not differ in how their swimming performance varied across Ta. By contrast, time and distance jumped until exhaustion were repeatable across the Ta gradient, indicating that individuals that perform best at a given Ta also perform best at another Ta. Moreover, thermal sensitivity of jumping endurance significantly differed among individuals, with individuals of high performance at low Ta displaying the highest sensitivity to Ta. Individual differences in terrestrial performance increased with decreasing Ta, which is opposite to results obtained in lizards at the inter-specific and among-individual levels. To verify the generality of these patterns, we need more studies on individual variation in thermal reaction norms for locomotor performance in lizards and frogs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ectotherms are taxa considered highly sensitive to rapid climate warming. This is because body temperature profoundly governs their performance, fitness and life history. Yet, while several modelling approaches currently predict thermal effects on some aspects of life history and demography, they do not consider how temperature simultaneously affects developmental success and offspring phenotypic performance, two additional key attributes that are needed to comprehensively understand species responses to climate warming. Here, we developed a stepwise, individual-level modelling approach linking biophysical and developmental models with empirically derived performance functions to predict the effects of temperature-induced changes to offspring viability, phenotype and performance, using green sea turtle hatchlings as an ectotherm model. Climate warming is expected to particularly threaten sea turtles, as their life-history traits may preclude them from rapid adaptation. Under conservative and extreme warming, our model predicted large effects on performance attributes key to dispersal, as well as a reduction in offspring viability. Forecast sand temperatures produced smaller, weaker hatchlings, which were up to 40% slower than at present, albeit with increased energy stores. Conversely, increases in sea surface temperatures aided swimming performance. Our exploratory study points to the need for further development of integrative individual-based modelling frameworks to better understand the complex outcomes of climate change for ectotherm species. Such advances could better serve ecologists to highlight the most vulnerable species and populations, encouraging prioritization of conservation effort to the most threatened systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Variation in static allometry, the power relationship between character size and body size among individuals at similar developmental stages, remains poorly understood. We tested whether predation or other ecological factors could affect static allometry by comparing the allometry between the caudal fin length and the body length in adult male guppies (Poecilia reticulata) among populations from different geographical areas, exposed to different predation pressures. Neither the allometric slopes nor the allometric elevations (intercept at constant slope) changed with predation pressure. However, populations from the Northern Range in Trinidad showed allometry with similar slopes but lower intercepts than populations from the Caroni and the Oropouche drainages. Because most of these populations are exposed to predation by the prawn Macrobrachium crenulatum, we speculated that the specific selection pressures exerted by this predator generated this change in relative caudal fin size, although effects of other environmental factors could not be ruled out. This study further suggests that the allometric elevation is more variable than the allometric slope.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The swimming backward for biomimetic carangiform robot fish is analyzed and implemented in this paper. The swimming law of the carangiform robot fish is modified according to the European Eel swimming mode based on the multiple-link structure to implement the backward motion. The motion mode difference between the eel and carangiform fish is discussed, and a qualitative kinematic analysis of the carangiform swimming in water is given to analyze the propulsion produced by the undulation of the multi-links tail. The experiments conducted demonstrate the good performance of the proposed method, and the results are given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integration of solar energy systems into buildings has been the subject of considerable commercial and academic research, particularly building integrated photovoltaics. However, the integration of solar hot water systems into roofing systems has had far less attention. This paper presents the theoretical and experimental results of a novel building integrated solar hot water system developed using existing long run roofing materials.

This work shows that it is possible to achieve effective integration that maintains the aesthetics of the building and also provides useful thermal energy. The results of an unglazed 108m2 swimming pool heater and 8m2 glazed domestic hot water systems are presented.

The experimental results show that the glazed system performs close to the theoretical model and is an effective provider of hot water in certain climates. However it was also found that for larger scale building integrated solar water heating systems, special attention must be paid to the configuration and arrangement of the collectors in order to minimise problems with respect to flow distribution and its effect on collector and system efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The warming of coastal oceans due to climate change is increasing the overwinter survival of tropical fishes transported to temperate latitudes by ocean currents. However, the processes governing early post-arrival mortality are complex and can result in minimum threshold temperatures for overwinter survival, which are greater than those predicted based upon physiological temperature tolerances alone. This 3.5 mo laboratory study monitored the early performance of a tropical damselfish Abudefduf vaigiensis that occurs commonly during austral summer along the SE Australian coast, under nominal summer and winter water temperatures, and compares results with a co-occurring year-round resident of the same family, Parma microlepis. Survivorship, feeding rate, growth and burst swimming ability (as a measure of predator escape ability) were all reduced for the tropical species at winter water temperatures compared to those in summer, whereas the temperate species experienced no mortality and only feeding rate was reduced at colder temperatures. These results suggest that observed minimum threshold survival temperatures may be greater than predicted by physiology alone, due to lowered food intake combined with increased predation risk (a longer time at vulnerable sizes and reduced escape ability). Overwinter survival is a significant hurdle in pole-ward range expansions of tropical fishes, and a better understanding of its complex processes will allow for more accurate predictions of changes in biodiversity as coastal ocean temperatures continue to increase due to climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the breeding season, seabirds are central place foragers and have to adapt their foraging behaviour in response to environmental variation to maximize efficiency and reproductive output. Due to its small size and swimming mode of transport, the little penguin (Eudyptula minor) is expected to be greatly susceptible to such fluctuations. The links between local-, meso- and macro-scale environmental conditions and inter-annual variation in foraging behaviour and reproductive performance of little penguins were investigated during three consecutive breeding seasons at two colonies in south-eastern Australia marked by contrasting oceanographic conditions. At a local scale, foraging effort was correlated positively with wind direction and negatively with wave height. At a regional scale, foraging effort of individuals from both colonies was negatively correlated with higher sea surface temperature (SST) off the Bonney Coast in the previous Austral summer, suggesting a weaker Bonney Upwelling event and a cascade of effects throughout the Bass Strait region. At a larger scale, the El Niño Southern Oscillation was also found to correlate with foraging behaviour, with lower foraging effort being observed during La Niña event. Although individuals increased their foraging effort during years with poorer conditions, they were not able to maintain high breeding success. In addition, peak egg-laying was found to coincide with a decrease in local SST and a peak of sea surface chlorophyll-a concentration. In conclusion, these results highlight how different environmental conditions could influence foraging behaviour and ultimately reproductive success of little penguins. It also showed that under certain circumstances, these individual strategies were not sufficient to cope with environmental variability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aquatic centres are popular recreational facilities in Australia and other developed countries. These buildings have experienced exponential demand over the past few decades. The growing desire for better indoor environmental quality in aquatic centres has resulted in a marked increase in energy consumption in this sector. Community expectations in relation to aquatic centres are rising and these spaces are associated with wellness and health. Energy consumption in indoor swimming pool buildings is high due to the high indoor air temperatures, increased ventilation heat losses and the need to disinfect water. This study investigates the energy consumption and indoor environmental quality of seven aquatic centres in Australia. The construction and various energy consuming systems of the facilities are analysed and compared against the energy consumption. Thermal comfort data is collected through measuring the indoor environmental parameters. Building envelopes were found to be leaky in most of the buildings resulting in energy wastage. The main indicators for energy consumption were gross floor area, area of pool surface, and number of visitors. It was found that the set point temperatures were significantly high in some of the buildings resulting in high level of discomfort for the spectators and staff.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Billfishes are considered among the fastest swimmers in the oceans. Despite early estimates of extremely high speeds, more recent work showed that these predators (e.g., blue marlin) spend most of their time swimming slowly, rarely exceeding 2 m s(-1). Predator-prey interactions provide a context within which one may expect maximal speeds both by predators and prey. Beyond speed, however, an important component determining the outcome of predator-prey encounters is unsteady swimming (i.e., turning and accelerating). Although large predators are faster than their small prey, the latter show higher performance in unsteady swimming. To contrast the evading behaviors of their highly maneuverable prey, sailfish and other large aquatic predators possess morphological adaptations, such as elongated bills, which can be moved more rapidly than the whole body itself, facilitating capture of the prey. Therefore, it is an open question whether such supposedly very fast swimmers do use high-speed bursts when feeding on evasive prey, in addition to using their bill for slashing prey. Here, we measured the swimming behavior of sailfish by using high-frequency accelerometry and high-speed video observations during predator-prey interactions. These measurements allowed analyses of tail beat frequencies to estimate swimming speeds. Our results suggest that sailfish burst at speeds of about 7 m s(-1) and do not exceed swimming speeds of 10 m s(-1) during predator-prey interactions. These speeds are much lower than previous estimates. In addition, the oscillations of the bill during swimming with, and without, extension of the dorsal fin (i.e., the sail) were measured. We suggest that extension of the dorsal fin may allow sailfish to improve the control of the bill and minimize its yaw, hence preventing disturbance of the prey. Therefore, sailfish, like other large predators, may rely mainly on accuracy of movement and the use of the extensions of their bodies, rather than resorting to top speeds when hunting evasive prey.