2 resultados para Sustainable Harvesting

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper looks at the City of Melbourne's new office development CH2 as a case study of world class energy performance. In particular, the integrated design of conventionally independent systems has led to the potential to deliver significant savings to the Council and to deliver better environmental conditions to building occupants that in turn may contribute to satisfaction, well-being and Productivity. It is concluded that this project has the potential
to be an iconic example of effective implementation of ESD (environmental sustainable design) principles and therefore act as a demonstration project to others. Energy efficiency of more than 50% of current benchmarks for Melbourne is effected. Energy harvesting is defined as arising from squander, waste and nature, which is a new concept introduced in this paper to better describe the design decision process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing the application of technologies for harvesting waste heat could make a significant contribution to sustainable energy production. Thermoelectrochemical cells are one such emerging technology, where the thermal response of a redox couple in an electrolyte is used to generate a potential difference across a cell when a temperature gradient exists. The unique physical properties of ionic liquids make them ideal for application as electrolytes in these devices. One of the keys to utilizing these media in efficient thermoelectrochemical cells is achieving high Seebeck coefficients, Se: the thermodynamic quantity that determines the magnitude of the voltage achieved per unit temperature difference. Here, we report the Se and cell performance of a cobalt-based redox couple in a range of different ionic liquids, to investigate the influence of the nature of the IL on the thermodynamics and cell performance of the redox system. The results reported include the highest Se to-date for an IL-based electrolyte. The effect of diluting the different ILs with propylene carbonate is also reported, which results in a significant increase in the output powers and current densities of the device.