11 resultados para Surface diffusion

em Deakin Research Online - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Atomically thin boron nitride (BN) nanosheets have been found to be excellent substrates for noble metal particles enabled surface enhanced Raman spectroscopy (SERS), thanks to their good adsorption of aromatic molecules, high thermal stability and weak Raman scattering. Faceted gold (Au) nanoparticles have been synthesized on BN nanosheets using a simple but controllable and reproducible sputtering and annealing method. The size and density of the Au particles can be controlled by sputtering time, current and annealing temperature etc. Under the same sputtering and annealing conditions, the Au particles on BN of different thicknesses show various sizes because the surface diffusion coefficients of Au depend on the thickness of BN. Intriguingly, decorated with similar morphology and distribution of Au particles, BN nanosheets exhibit better Raman enhancements than silicon substrates as well as bulk BN crystals. Additionally, BN nanosheets show no noticeable SERS signal and hence cause no interference to the Raman signal of the analyte. The Au/BN substrates can be reused by heating in air to remove the adsorbed analyte without loss of SERS enhancement.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Multi-walled carbon nanotubes with cylindrical and bamboo-type structures are produced in a graphite sample after mechanical milling at ambient temperature and subsequent thermal annealing up to 1400 °C. The ball milling produces a precursor structure and the thermal annealing activates the nanotube growth. Different nanotubular structures indicate different formation mechanisms: multi-wall cylindrical carbon nanotubes are probably formed upon micropores and the bamboo tubes are produced because of the metal catalysts. A two-dimensional growth governed by surface diffusion is believed to be one important factor for the nanotube growth. A potential industrial production method is demonstrated with advantages of large production quantity and low cost.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Prismatic boron nitride nanorods have been grown on single crystal silicon substrates by mechanical ball-milling followed by annealing at 1300 °C. Growth takes place by rapid surface diffusion of BN molecules, and follows heterogeneous nucleation at catalytic particles of an Fe/Si alloy. Lattice imaging transmission electron microscopy studies reveal a central axial row of rather small truncated pyramidal nanovoids on each nanorod, surrounded by three basal planar BN domains which, with successive deposition of epitaxial layers adapt to the void geometry by crystallographic faceting. The bulk strain in the nanorods is taken up by the presence of what appear to be simple nanostacking faults in the external, near-surface domains which, like the nanovoids are regularly repetitive along the nanorod length. Growth terminates with a clear cuneiform tip for each nanorod. Lateral nanorod dimensions are essentially determined by the size of the catalytic particle, which remains as a foundation essentially responsible for base growth. Growth, structure, and dominating facets are shown to be consistent with a system which seeks lowest bulk and surface energies according to the well-known thermodynamics of the capillarity of solids.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A solid-state, mass-quantity transformation from V2O5 powders to nanorods has been realized via a two-step approach. The nanorods were formed through a controlled nanoscale growth from the nanocrystalline V2O5 phase created by a ball milling treatment. The nanorods grow along the [010] direction and are dominated by {001} surfaces. Surface energy minimization and surface diffusion play important roles in their growth mechanism. Real large quantity production can be achieved when the annealing process is conducted in a fluidized bed which can treat large quantities of the milled materials at once. The crystal orientation of nanorods provides an improved cycling stability for lithium intercalation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Growth mechanisms of TiO2 nanorods synthesized from mineral ilmenite using ball milling and annealing method have been systematically investigated. Two annealing processes are needed to grow the nanorods. The heating rate and gaseous environment in the first annealing step are critical to the formation of intermediate phases; these and the annealing atmosphere in the second heating play very important roles in nanorod growth. One-dimensional growth of the nanorods induced by low-temperature annealing in nitrogen plus hydrogen is possibly driven by atom vacancy diffusion in addition to surface diffusion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The potential of superhydrophobic and superoleophilic microwrinkled reduced graphene oxide (MWrGO) structures is here demonstrated for oil spill cleanup. The impact of the thickness of MWrGO films on the sorption performance of three different oils was investigated. Water contact angles across the MWrGO surfaces were found to exceed 150°, while oil could be easily absorbed by the microwrinkled structures of MWrGO within seconds after contact. Although the oil surface diffusion rate was not found to be dependent on the thickness of the graphene oxide films, the oil sorption capacity was the largest with the thinner MWrGO films due to the high surface area resulting from their fine surface texture. Furthermore, the composite films can be repeatedly used for at least 20 oil sorption-removal cycles without any notable loss in selectivity and uptake capacity. These MWrGO/elastomer composite films could be applied as a potential candidate material for future oil spill cleanup.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microstructural processes of Cr(N,C) coating formation by thermoreactive deposition and diffusion (TRD) on pre-nitrocarburised H13 tool steel were studied. Both nitrocarburising and TRD were performed in fluidized bed furnaces at 570 °C. During TRD, chromium was transferred from chromium powder in the fluidized bed, to the nitrocarburised substrates by gas-phase reactions initiated by reaction of HCl gas with the chromium. Addition of 30% H2 to the input inert gas was found to increase the rate of coating formation, although hydrogen reduction resulted in rapid loss of nitrogen to the surface. The reason for the increased rate of coating formation could not be established without further investigation, although several possible explanations have been proposed. It was found that porosity and the formation of an iron nitride ‘cover layer’ during nitrocarburising were the biggest influences on the microstructure of the Cr(N,C) coating. Microstructural characterization of the coatings was performed by scanning electron microscopy (SEM), X-ray diffraction (XRD) and glow discharge optical emission spectroscopy (GDOES).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A duplex surface treatment has been developed involving the pre-treatment of hardened and tempered AISI H13 chromium hot-work tool steel by a ferritic nitrocarburising process, and a subsequent treatment of the nitrocarburised surface by a low-temperature chromium thermo-reactive deposition process.  The process formed a thin and hard chromium carbonitride surface layer above a hardened diffusion zone, and the low processing temperature allowed the properties of the core material to be retained. It is expected this surface treatment will find application in the treatment  of tooling used for aluminium forming operations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the aggregation, ageing and transport properties of surface modified silica dispersions in DMSO by photon correlation spectroscopy and conductivity measurements. The surface modification introduces Li+-ions that dissociate in the dispersion creating a single Li+-ion conducting electrolyte. We show that the surface modification changes the aggregation and ageing properties of the material. There is a pronounced ageing observed for the modified silica dispersions. At high concentrations of fumed silica a gel state is found, which in the case of the surface modified silica is a very weak gel that can be rejuvenated by ultrasonic treatment. The key parameter controlling the aggregation in this system is hydrogen bonding and the surface modification results in a very low number of sites for hydrogen bonding. In addition there is a contribution from repulsive electrostatic interactions in the surface modified silica dispersions due to the highly charged surfaces of these particles. Furthermore, the Li+-ion diffusion, at low silica concentration, is three orders of magnitude faster than that of the silica particles and in the gel state the silica particles are immobile. We also find that the Li+-ion diffusion is virtually independent of the silica concentration in the dispersions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Voltammetric behavior at gold electrodes in aqueous media is known to be strongly dependent on electrode polishing and history. In this study, an electrode array consisting of 100 nominally identical and individually addressable gold disks electrodes, each with a radius of 127 µm, has been fabricated. The ability to analyze both individual electrode and total array performance enables microscopic aspects of the overall voltammetric response arising from variable levels of inhomogeneity in each electrode to be identified. The array configuration was initially employed with the reversible and hence relatively surface insensitive [Ru(NH3)6]3+/2+ reaction and then with the more highly surface sensitive quasi-reversible [Fe(CN)6]3−/4− process. In both these cases, the reactants and products are solution soluble and, at a scan rate of 50 mV s−1, each electrode in the array is assumed to behave independently, since no evidence of overlapping of the diffusion layers was detected. As would be expected, the variability of the individual electrodesʼ responses was significantly larger than found for the summed electrode behavior. In the case of cytochrome c voltammetry at a 4,4′-dipyridyl disulfide modified electrode, a far greater dependence on electrode history and electrode heterogeneity was detected. In this case, voltammograms derived from individual electrodes in the gold array electrode exhibit shape variations ranging from peak to sigmoidal. However, again the total response was always found to be well-defined. This voltammetry is consistent with a microscopic model of heterogeneity where some parts of each chemically modified electrode surface are electroactive while other parts are less active. The findings are consistent with the common existence of electrode heterogeneity in cyclic voltammetric responses at gold electrodes, that are normally difficult to detect, but fundamentally important, as electrode nonuniformity can give rise to subtle forms of kinetic and other forms of dispersion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work demonstrates that the interfacial properties in a natural fiber reinforced polylactide biocomposite can be tailored through surface adsorption of amphiphilic and biodegradable poly (ethylene glycol)-b-poly-(L-lactide) (PEG-PLLA) block copolymers. The deposition from solvent solution of PEG-PLLA copolymers onto the fibrous substrate induced distinct mechanisms of molecular organization at the cellulosic interface, which are correlated to the hydrophobic/hydrophilic ratios and the type of solvent used. The findings of the study evidenced that the performance of the corresponding biocomposites with polylactide were effectively enhanced by using these copolymers as interfacial coupling agents. During the fabrication stage, diffusion of the polylactide in the melt induced a change in the environment surrounding block copolymers which became hydrophobic. It is proposed that molecular reorganization of the block copolymers at the interface occurred, which favored the interactions with both the hydrophilic fibers and hydrophobic polylactide matrix. The strong interactions such as intra- and intermolecular hydrogen bonds formed across the fiber−matrix interface can be accounted for the enhancement in properties displayed by the biocomposites. Although the results reported here are confined, this concept is unique as it shows that by tuning the amphiphilicity and the type of building blocks, it is possible to control the surface properties of the substrate by self-assembly and disassembly of the amphiphiles for functional materials.