64 resultados para Surface Morphology

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the lactating breast, the development of secretory alveoli consisting of differentiated cells arranged around a central lumen is dependent on signals from the extracellular environment of the cells. There are few cell lines that model this process. We previously showed that the human breast carcinoma line PMC42-LA can be induced to form organoids, reminiscent of secretory alveoli found in the lactating human breast. In this report, we used high-resolution scanning electron microscopy to show that the formation of organoids is accompanied by development of cell surface microvilli. Extracellular matrix-induced formation of microvilli occurred on the internal and external surfaces of cells in the organoids and not on surfaces in contact with the extracellular matrix. Organoid formation of PMC42-LA cells induced a rearrangement of the extracellular matrix, seen in the form of radiating fibers from the organoids. In summary, there is an interaction between PMC42-LA cells and the underlying extracellular matrix, which leads to the formation of polarized cells with well-developed microvilli. This is accompanied by organization of the extracellular matrix. PMC42-LA is a relevant model of the human breast for investigations into cell-cell and cell-matrix interactions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Friction plays an important role in sheet metal forming (SMF) and the roughness of the surface of the sheet is a major factor that influences friction. In finite element method (FEM) models of metal forming, the roughness has usually been assumed to be constant; even though it is commonly observed that sheet drawn under tension over a tool radius results in the surface becoming shiny, indicating a major change in surface morphology. An elastic–plastic FEM model for micro-contact between a flat surface and a single roughness peak has been developed. The model was used to investigate the effect of the membrane stress in the sheet on the deformation of an artificial roughness peak. From the simulation results, the change in asperity, or deformation of the local peak, for a given nominal tool contact stress is significantly influenced by the local substrate stress. The height of the asperity decreases with increasing substrate stress and the local pressure is much higher than the nominal pressure. In addition, the local contact stress decreases with an increase in the substrate stress levels.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We treat naturally pigmented karakul wool with a surface modification system of chlorination and catalytic bleaching, then examine its structure and properties. SEM photos reveal the surface morphology of karakul wool, and the Allworden reaction shows the extent of damage to the epicuticle. The results show that the surface modification removes the bulk of the fiber scales and bleaching increases fiber whiteness. After bleaching, the felting propensity of karakul wool improves slightly and its dye uptake decreases. For modified and bleached karakul wool, the felting propensity decreases, the dyeing rate increases, and equilibrium exhaustion decreases compared with untreated karakul wool.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the present study, pure titanium (Ti) plates were firstly treated to form various types of oxide layers on the surface and then were immersed into simulated body fluid (SBF) to evaluate the apatite-forming ability. The surface morphology and roughness of the different oxide layers were measured by atomic force microscopy (AFM), and the surface energies were determined based on the Owens–Wendt (OW) methods. It was found that Ti samples after alkali heat (AH) treatment achieved the best apatite formation after soaking in SBF for three weeks, compared with those without treatment, thermal or H2O2 oxidation. Furthermore, contact angle measurement revealed that the oxide layer on the alkali heat treated Ti samples possessed the highest surface energy. The results indicate that the apatite-inducing ability of a titanium oxide layer links to its surface energy. Apatite nucleation is easier on a surface with a higher surface energy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Some of the critical properties for a successful orthopedic or dental implant material are its biocompatibility and bioactivity. Pure titanium (Ti) and zirconium (Zr) are widely accepted as biocompatible metals, due to their non-toxicity. While the bioactivity of Ti and some Ti alloys has been extensively investigated, there is still insufficient data for Zr and titanium-zirconium (TiZr) alloys. In the present study, the bioactivity, that is, the apatite forming ability on the alkali and heat treated surfaces of Ti, Zr, and TiZr alloy in simulated body fluid (SBF), was studied. In particular, the effect of the surface roughness characteristics on the bioactivity was evaluated for the first time. The results indicate that the pretreated Ti, Zr and TiZr alloy could form apatite coating on their surfaces. It should be noted that the surface roughness also critically affected the bioactivity of these pretreated metallic samples. A surface morphology with an average roughness of approximately 0.6 microm led to the fastest apatite formation on the metal surfaces. This apatite layer on the metal surface is expected to bond to the surrounding bones directly after implantation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The importance of particle size in titanium (Ti) fabricated by powder metallurgy for the surface energy and its impact on the apatite formation was investigated. Four sorts of Ti powders of different mean particle size were realized through 20 min, 2 h, 5 h and 8 h of ball milling, respectively. Each sort of Ti powder was used to fabricate porous Ti and its nonporous counterparts sharing similar surface morphology, grain size and chemical composition, and then alkali-heat treatment was conducted on them. Surface energy was measured on the surfaces of the nonporous Ti counterparts due to the difficulty in measuring the porous surfaces directly. The surface energy increase on the alkali-heat-treated porous and nonporous Ti was observed due to the decrease in the particle size of the Ti powders and the presence of Ti–OH groups brought by the alkali-heat treatment. The apatite-inducing ability of the alkali-heat-treated porous and nonporous Ti with different surface energy values was evaluated in modified simulated body fluid and results indicated that there was a strong correlation between the apatite-inducing ability and the surface energy. The alkali-heat-treated porous and nonporous Ti discs prepared from the powders with an average particle size of 5.89 ± 0.76 μm possessed the highest surface energy and the best apatite-inducing ability when compared to the samples produced from the powders with the average particle size varying from 19.79 ± 0.31 to 10.25 ± 0.39 μm.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Titanium (Ti) plates were firstly treated to form various types of oxide layers on the surface and then immersed into simulated body fluid (SBF) to evaluate the apatite forming ability. The surface morphology and roughness of the different oxide layers were measured by atomic force microscopy (AFM), and the surface energies were determined based on the Owens-Wendt (OW) methods. It was found that Ti samples after Alkali-Heat treatment (AH) achieved the best apatite formation after soaking in SBF for 3 weeks, compared to those without treatment, thermal or H2O2 oxidation. Furthermore, contact angle measurement revealed that the oxide layer on the alkali-heat treated Ti samples possessed the highest surface energy. The results indicate that the apatite inducing ability of a titanium oxide layer is linked to its surface energy. Apatite nucleation is easier on a surface with a higher surface energy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The wetting behavior of water droplets was studied on tunable nanostructured polystyrene (PS) surfaces fabricated by temperature-induced capillary template wetting. The surface morphology of PS varied with the annealing temperature. Contact angle (CA) measurements showed that the wettability of polystyrene surfaces could be tuned from hydrophobic (CA = 104°) to superhydrophobic (CA = 161°) by rendering different morphologies, which could be explained by two distinct wetting modes, i.e., the Wenzel and Cassie–Baxter wetting state. Meanwhile, the critical annealing temperature inducing wetting transition between the Wenzel state and Cassie–Baxter state was obtained. This approach could be easily extended to produce superhydrophobic surfaces on other thermoplastic polymers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this work, the interaction between hydrogen peroxide (H2O2) and a gradient structured Ti was investigated extensively. The gradient structured Ti (SMAT Ti) was produced by surface mechanical attrition treatment (SMAT), and then it was immersed in H2O2 solution for different time until 48 h at room temperature (25 °C). The structure and surface morphology evolution were examined by Raman spectra and scanning electron microscopy (SEM). The formation mechanism of nanoporous titania was discussed based on above results.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study, titanium (Ti) and titanium-zirconium (TiZr) alloy samples fabricated through powder metallurgy were surface modified by alkali-heat treatment and calcium (Ca)-ion-deposition. The alteration of the surface morphology and the chemistry of the Ti and TiZr after surface modification were examined. The bioactivity of the Ti and TiZr alloys after the surface modification was demonstrated. Subsequently, the cytocompatibility of the surface modified Ti and TiZr was evaluated via in vitro cell culture using human osteoblast-like cells (SaOS2). The cellular attachment, adhesion and proliferation after cell culture for 14 days were characterized by scanning electron microscopy (SEM) and MTT assay. The relationship between surface morphology and chemical composition of the surface modified Ti and TiZr and cellular responses was investigated. Results indicated that the surface-modified Ti and TiZr alloys exhibited excellent in vitro cytocompatibility together with satisfactory bioactivity. Since osteoblast adhesion and proliferation are essential prerequisites for a successful implant in vivo, these results provide evidence that Ti and TiZr alloys after appropriate surface modification are promising biomaterials for hard tissue replacement.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Anodization of titanium and its alloys, under controlled conditions, generates a nanotubular architecture on the material surface. The biological consequences of such changes are poorly understood, and therefore, we have analyzed the cellular and molecular responses of osteoblasts that were plated on nanotubular anodized surface of a titanium-zirconium (TiZr) alloy. Upon comparing these results with those obtained on acid etched and polished surfaces of the same alloy, we observed a significant increase in adhesion and proliferation of cells on anodized surfaces as compared to acid etched or polished surface. The expression of genes related to cell adhesion was high only on anodized TiZr, but that of genes related to osteoblast differentiation and osteocalcin protein and extracellular matrix secretion were higher on both anodized and acid etched surfaces. Examination of surface morphology, topography, roughness, surface area and wettability using scanning electron microscopy, atomic force microscopy, and contact angle goniometry, showed that higher surface area, hydrophilicity, and nanoscale roughness of nanotubular TiZr surfaces, which were generated specifically by the anodization process, could strongly enhance the adhesion and proliferation of osteoblasts. We propose that biological properties of known bioactive titanium alloys can be further enhanced by generating nanotubular surfaces using anodization.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

High energy is involved when a rider impacts a road surface in a crash. Rider speed, height of fall and road surface morphology all contribute to the level of initial impact energy. Impact can cause fabrics and seams of protective garments to burst rendering their protective value void. The Cambridge abrasion tester tests protective clothing with a fall height of 50mm and abrasive belt speed of 28km/hr, far below what can happen in a “high side” motorcycle crash at 100km/hr. This work addresses the mechanics of what occurs in the first few microseconds of an impact and provides insight into the effect that speed has on fabric burst. This work used a Cambridge impact abrasion test to evaluate two different protective motorcycle clothing fabrics (a denim and brushed fleecy fabric over a p-aramid protective liner). It measured their abrasion resistance at an abrasion speed of 28km/hr and standard impact height. It used a high speed camera to measure the impact displacement of the test head. Fabrics with high stretch were more prone to burst failure on initial impact. Fabric burst is caused by a high speed tensile stress between the fabric coupled with the abrasion surface and the inertia of the body dragging against it. Stretch fabrics are pushed into the abrasion surface for a longer period by the body before the tensile stress occurs so the coupling force is higher. If the transition to abrasion occurs early in the impact then a fabric is less likely to burst.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this study, the physico-chemical effects occasioned by the cold plasma discharge (CPD) on the photo-decolorization of Reactive Orange 16 (RO16) by 3D fabrics (spacer fabrics) loaded with ZnO:TiO2 nano-photocatalysts (nphs) were optimized via response surface methodology (RSM). CPD was employed to improve the surface characteristics of the spacer fabrics for nphs loading. Surface morphology and color variation were studied utilizing scanning electron microscopy (SEM) and CIE-Lab system, respectively. The effect of CPD on the wetting ability of the spacer fabrics was examined using dynamic adsorption measurement (DAM). Also, X-ray fluorescence (XRF) was utilized to investigate the durability of the nphs on the spacer fabrics. All the experiments were implemented in a Box-Behnken design (BBD) with three independent variables (CPD treatment time, dye concentration and irradiation time) in order to optimize the decolorization of RO16. The anticipated values of the decolorization efficiency were found to be in excellent agreement with the experimental values (R2 = 0.9996, Adjusted R2 = 0.9992). The kinetic analysis demonstrated that the photocatalytic decolorization followed the Langmuir-Hinshelwood kinetic model. In conclusion, this heterogeneous photocatalytic process is capable of decolorizing and mineralizing azoic reactive dye in textile wastewater. Moreover, the results confirmed that RSM based on the BBD was a suitable method to optimize the operating conditions of RO16 degradation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Advancing the design of thin-film composite membrane surfaces is one of the most promising pathways to deal with treating varying water qualities and increase their long-term stability and permeability. Although plasma technologies have been explored for surface modification of bulk micro and ultrafiltration membrane materials, the modification of thin film composite membranes is yet to be systematically investigated. Here, the performance of commercial thin-film composite desalination membranes has been significantly enhanced by rapid and facile, low pressure, argon plasma activation. Pressure driven water desalination tests showed that at low power density, flux was improved by 22% without compromising salt rejection. Various plasma durations and excitation powers have been systematically evaluated to assess the impact of plasma glow reactions on the physico-chemical properties of these materials associated with permeability. With increasing power density, plasma treatment enhanced the hydrophilicity of the surfaces, where water contact angles decreasing by 70% were strongly correlated with increased negative charge and smooth uniform surface morphology. These results highlight a versatile chemical modification technique for post-treatment of commercial membrane products that provides uniform morphology and chemically altered surface properties.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A segmented hollow cathode (SHC) geometry was used for electrostatic confinement of plasma, and surface engineering treatments were conducted in this arrangement. The assessed processes included plasma nitriding, reactive deposition of sputtered material, and deposition of carbonaceous films by plasma-enhanced chemical vapor deposition with a bipolar pulsed-dc power supply on steel substrates. The treated specimens exhibited uniform surface morphology and deposition layers. Characterization techniques included optical microscopy, scanning electron microscopy with energy dispersive X-ray capability, and X-ray diffraction. The advantages and potential applications of the SHC arrangement are discussed in view of these results.