17 resultados para Supramolecular materials

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supramolecular materials with three-dimensional fiber networks have applications in many fields. For these applications, a homogeneous fiber network is essential in order to get the desired performance of a material. However, such a fiber network is hard to obtain, particularly when the crystallization of fiber takes place nonisothermally. In this work, a copolymer is used to kinetically control the nucleation and fiber network formation of a small molecular gelling agent, N-lauroyl-L-glutamic acid di-nbutylamide (GP-1) in benzyl benzoate. The retarded nucleation and enhanced mismatch nucleation of the gelator by the additive leads to the conversion of a mixed fiber network into a homogeneous network consisting of spherulites only. The enhanced structural mismatch of the GP-1 during crystallization is quantitatively characterized using the rheological data. This effect also leads to the transformation of an interconnecting (single) fiber network of GP-1 into a multidomain fiber network in another solvent, isostearyl alcohol. The approach developed is significant to the production of supramolecular materials with homogeneous fiber networks and is convenient to switch a single fiber network to a multidomain network without adjusting the thermodynamic driving force.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The rheological properties of supramolecular soft functional materials are determined by the networks within the materials. This research reveals for the first time that the volume confinement during the formation of supramolecular soft functional materials will exert a significant impact on the rheological properties of the materials. A class of small molecular organogels formed by the gelation of N-lauroyl-L-glutamic acid din-butylamide (GP-1) in ethylene glycol (EG) and propylene glycol (PG) solutions were adopted as model systems for this study. It follows that within a confined space, the elasticity of the gel can be enhanced more than 15 times compared with those under un-restricted conditions. According to our optical microscopy observations and rheological measurements, this drastic enhancement is caused by the structural transition from a multi-domain network system to a single network system once the average size of the fiber network of a given material reaches the lowest dimension of the system. The understanding acquired from this work will provide a novel strategy to manipulate the network structure of soft materials, and exert a direct impact on the micro-engineering of such supramolecular materials in micro and nano scales.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article gives an overview of the current progress of a class of supramolecular soft materials consisting of fiber networks and the trapped liquid. After discussing the up-to-date knowledge on the types of fiber networks and the correlation to the rheological properties, the gelation mechanism turns out to be one of the key subjects for this review. In this concern, the following two aspects will be focused upon: the single fiber network formation and the multi-domain fiber network formation of this type of material. Concerning the fiber network formation, taking place via nucleation, and the nucleation-mediated growth and branching mechanism, the theoretical basis of crystallographic mismatch nucleation that governs fiber branching and formation of three-dimensional fiber networks is presented. In connection to the multi-domain fiber network formation, which is governed by the primary nucleation and the subsequent formation of single fiber networks from nucleation centers, the control of the primary nucleation rate will be considered. Based on the understanding on the the gelation mechanism, the engineering strategies of soft functional materials of this type will be systematically discussed. These include the control of the nucleation and branching-controlled fiber network formation in terms of tuning the thermodynamic driving force of the gelling system and introducing suitable additives, as well as introducing ultrasound. Finally, a summary and the outlook of future research on the basis of the nucleation-growth-controlled fiber network formation are given.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Supramolecular ionic networks combine singular properties such as self-healing behaviour and ionic conductivity. In this work we present an insight into the ionic conductivity and molecular dynamic behaviour of an amorphous and semicrystalline supramolecular ionic networks (iNets) that were synthesised by self-assembly of difunctional imidazolium dicationic molecules coupled with (trifluoromethane-sulfonyl) imide dianionic molecules. Relatively low ionic conductivity values were obtained for the semicrystalline iNet below its melting point (Tm =101°C) in comparison with the amorphous iNet for which the conductivity significantly increased (~3 orders of magnitude) above 100°C. Upon LiTFSI doping, the semicrystalline iNet reached conductivity values ~ 10-3 Scm-1 due to enhanced mobility of the network which was supported by solid-state static NMR. Furthermore, the overlapping of 19F and 7Li resonance lines from both the semicrystalline network and the LiTFSI suggests fast molecular motions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The local inflammatory environment of the cell promotes the growth of epithelial cancers. Therefore, controlling inflammation locally using a material in a sustained, non-steroidal fashion can effectively kill malignant cells without significant damage to surrounding healthy cells. A promising class of materials for such applications are the nanostructured scaffolds formed by epitope containing minimalist self-assembled peptides (SAPs), as they are bioactive on a cellular length scale, whilst presenting as an easily handled hydrogel. Here, we show that the assembly process distributes an anti-inflammatory polysaccharide, fuccoidan, localised to the nanofibers to function as an anti-inflammatory biomaterial for cancer therapy. We show that it supports healthy cells, whilst inducing apoptosis in cancerous endothelial cells, as demonstrated by the downregulation of the proinflammatory gene and protein expression pathways associated with epithelial cancer progression. Our findings highlight an innovative material approach with potential applications as local epithelial cancer immunotherapy and drug delivery vehicles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The formation of fiber networks and the resulting rheological properties of supramolecular soft materials are dramatically influenced when the volume of the system is reduced to a threshold. Unlike un-confined systems, the formation of fiber networks under volume confinement is independent of temperature and solute concentration.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Crystalline spherulitic fiber networks are commonly observed in polymeric and supramolecular functional materials. The elasticity of materials with this type of network is low if interactions between the individual spherulites are weak (mutually exclusive). Improving the elasticity of these materials is necessary because of their important applications in many fields. In this work, the engineering of the microstructures and rheological properties of this type of material is carried out. A small molecule organogel formed by the gelation of N-lauroyl-L-glutamic acid di-n-butylamide (GP-1) in propylene glycol (PG) is used as an example. The elasticity of this material is improved by controlling the thermodynamic driving force, the supersaturation of the gelator, and by using a selected copolymer additive to manipulate the primary nucleation of GP-1. Because of the weak interactions between the GP-1 spherulites, with the same fiber mass, the elasticity of GP-1/PG gel is less than half of those of the other two gels formed by GP-1 and 2-hydroxystearlic acid in solvent benzyl benzoate (BB), which are supported by interconnecting spherulitic fiber networks. This work develops a robust approach to the engineering of supramolecular functional materials especially those with mutually exclusive spherulite fiber networks.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a new generic strategy to fabricate nanoparticles in the “cages” within the fibrous networks of supramolecular soft materials. As the cages can be acquired by a design-and-production manner, the size of nanoparticles synthesized within the cages can be tuned accordingly. To implement this idea, both selenium and silver were chosen for the detailed investigation. It follows that the sizes of selenium and silver nanoparticles can be controlled by tuning the pore size of the fiber networks in the material. When the concentration of the gelator is high enough, monodisperse nanoparticles can be prepared. More interestingly, the morphology of the nanoparticles can be altered: silver disks can be formed when the concentrations of both the gelator and silver nitrate are sufficiently low. As the fiber network serves as a physical barrier and semisolid support for the nanoparticles, the stability in the aqueous media and the ease of application of these nanoparticles can be substantially enhanced. This robust surfactant-free approach will not only allow the controlled fabrication of nanoparticles, but also can be applied to the fabrication of composite materials for robust applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The rheological properties of a hierarchically structured supramolecular soft material are mainly determined by the structure of its network. Controlling the thermodynamic driving force of physical gels (one type of such materials) during the formation has proven effective in manipulating the network structure due to the nature of nucleation and growth of the fiber network formation in such a supramolecular soft material. Nevertheless, it is shown in this study that such a property can be dramatically influenced when the volume of the system is reduced to below a threshold value. Unlike un-confined systems, the network structure of such a soft material formed under volume confinement contains a constant network size, independent of the experimental conditions, i.e. temperature and solute concentration. This implies that the size of the fiber networks in such a material is invariable and free from the influence of external factors, once the volume is reduced to a threshold. The observations of this work are significant in the control of the formation of fibrous networks in materials of this type.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

As one class of the most important supramolecular functional materials, gels formed by low molecular weight gelators (LMWGs) have many important applications. The key important parameters affecting the in-use performance of a gel are determined by the hierarchical fiber network structures. Fiber networks consisting of weakly interacting multiple domains are commonly observed in gels formed by LMWGs. The rheological properties, particularly the elasticity, of a gel with such a fiber network are weak due to the weak interactions between the individual domains. As achieving desirable rheological properties of such a gel is practically relevant, in this work, we demonstrate the engineering of gels with such a type of fiber network by controlling crystallization of the gelator. Two example gels formed by a glutamic acid derivative in a non-ionic surfactant Tween 80 and in propylene glycol were engineered by controlling the thermodynamic driving force for crystallization. For a fixed gelator concentration, the thermodynamic driving force was manipulated by controlling the temperature for fiber crystallization. It was observed that there exists an optimal temperature at which a gel with maximal elasticity can be fabricated. This will hopefully provide guidelines for producing high performance soft materials by engineering their fiber network structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organometallic compounds are building blocks for materials with applications in catalysis, pharmaceutical production and molecular sensors. Research presented in this thesis focused on the design and synthesis of compounds with supramolecular architectures. Crystal engineering these new compounds provides the basis for the next generation of advanced materials required by industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three-dimensional fiber networks were created from an organogel system consisting mainly of elongated fibrils by using a nonionic surfactant as an additive. The presence of the surfactant molecules manipulates the network structure by enhancing the mismatch nucleation on the growing fiber tips. Both the fiber network structure and the rheological properties of the material can be finely tuned by changing the surfactant concentration, which provides a robust approach to the engineering of supramolecular soft functional materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis contributed to the general understanding that relates to supramolecular polymer nanocomposite and to a process for the preparation of these polymer nanocomposites having some desired properties like self-healing ability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This PhD project dealt with the development and characterisation of a number of metallo and hydrogen-bonded supramolecular dendrimers for applications in the area of self-healing materials