4 resultados para Supramolecular association

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural data (X-ray and solution and solid-state 119Sn NMR) show that skew-trapezoidal-bipyramidal diorganotin compounds of 2-quinaldate are invariably monomeric, owing to the steric bulk of the carboxylate ligand. In contrast, most of the analogous compounds of 2-picolinate (2-pic) can increase their coordination number by polymerization or the incorporation of solvent in their coordination sphere in the solid state. The exceptional compound is tBu2Sn(2-pic)2 (3), for which no increase in coordination number is apparent, a result that is correlated with the bulky tert-butyl groups. Thus, judicious choice of tin or ligand substituents can be exploited to dictate coordination number and/or the degree of supramolecular aggregation in the investigated systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of oligomethylene-bridged diorganotin triflates R(OTf)2Sn(CH2)nSn(OTf)2R (R = CH2SiMe3; n = 3, 4, 8, 10) were synthesized by reaction of triflic acid with the precursor oxides R(O)Sn(CH2)nSn(O)R. On the basis of 119Sn NMR (in acetonitrile) the triflates appear to be the simple six-coordinated ionic species [(MeCN)4(RSn(CH2)nSnR)(MeCN)4]2+. These triflates readily undergo hydrolysis to give products, the identity of which depends on the length of the oligomethylene bridge. For n = 3 (5), the solid-state structure shows association of two dimeric units, which results in a tetracationic double ladder. Extensive hydrogen bonding gives rise to a supramolecular association. Solution 119Sn NMR and ES MS suggest some dissociation of 5 into dimers containing four tin atoms and possibly monomers containing two tin atoms. A rudimentary solid-state structure for n = 4 (6) indicates a linear polymer based on dimeric (four tin atoms) units. The structure of 6 also features extensive hydrogen bonding, this time effectively giving rise to alternating layers of cations and anions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The synthesis and characterization of unsymmetric diorganotellurium compounds containing a sterically demanding I-naphthyl or
mesitylligand and a small bite chelating organic ligand capable of 1,4-Te···N(O) intramolecular interaction is described. The reaction
of ArTeCl3 (Ar = I-ClOH7, Np; 2,4,6-Me3C6H2' Mes) with (SB)HgCI [SB = the Schiff base, 2-(4,4'-N02C6H4CH=NC6H3-Me)] or a methyl ketone (RCOCH3) afforded the corresponding dichlorides (SB)ArTeCI2 (Ar = Np, 1Aa; Mes, 1Ba) or (RCOCH2)ArTeCl2 (Ar = Np; R = Ph (2Aa), Me (3Aa), Np (4Aa); Ar = Mes, R = Ph (2Ba)). Reduction of 1Aa and 1Ba by Na2S205 readily gave the tellurides (SB)ArTe (Ar = Np (1A), Mes, (1B) but that of dichlorides derived from methylketones was complicated due to partial decomposition to tellurium powder and diarylditelluride (Ar2Te2), resulting in poor yields of the corresponding tellurides 2A, 2B and 3A. Oxidation of the isolated tellurides with S02Cl2, Br2 and I2 yielded the corresponding dihalides. All the synthesized compounds have been characterized with the help of IR, 1H, l3C, and 125Te NMR and in the case of 2Aa, and 2Ba by X-ray crystallography. Appearance of only one 125Te signal indicated that the unsymmetric derivatives were stable to disproportionation to symmetric species. Intramolecular 1,4-Te· . ·0 secondary bonding interactions (SBIs) are exhibited in the crystal structures of both the tellurium(IV) dichlorides, 2Aa, and 2Ba. Steric repulsion of the mesityl group in the latter dominates over lone pair-bond pair repulsion, resulting in significant widening of the equatorial C-Te-C angle. This appears to be responsible for the lack of Te· . ·CI involved supramolecular associations in the crystal structure of 2Ba.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The supramolecular association of the previously described para-dimethylaminophenyl-substituted diorganotellurium dihalides (p-Me2NC6H4)2TeX2 (X = Cl (1), Br (2), I (3)) and (p-Me2NC6H4)RTeCl2 (R = Ph (4), p-EtOC6H4 (5)), was investigated by X-ray crystallography. Unlike almost all other structurally characterized diorganotellurium dihalides, (p-Me2NC6H4)2TeX2 (X = Cl (1), Br (2), I (3)) reveal no secondary Te∙∙∙X interactions, but X∙∙∙X interactions. The structure of (p-Me2NC6H4)PhTeCl2 (4) resembles that of Ph2TeCl2 and shows one secondary Te∙∙∙Cl contact, whereas (p-Me2NC6H4)(p-EtOC6H4)TeCl2 (5) exhibits neither secondary Te∙∙∙Cl nor Cl∙∙∙Cl interactions. The unusual structural characteristics of 1–5 are attributed to the occurrence of intermolecular Te∙∙∙π and π∙∙∙π contacts associated with quinoid π-electron delocalization across the para-dimethylaminophenyl (1–5) and para-ethoxyphenyl (5) groups.