8 resultados para Submarine canyons

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submarine Sonar FX is a sound effect of a submarine/nautical type of sonar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Late Caledonian to Early Hercynian North Qilian orogenic belt in northwestern China is an elongate tectonic unit situated between the North China plate in the north and the Qaidam plate in the south. North Qilian started in the latest Proterozoic to Cambrian as a rift basin on the southern margin of North China, and evolved later to an archipelagic ocean and active continental margin during the Ordovician and a foreland basin from Silurian to the Early and Middle Devonian. The Early Silurian flysch and submarine alluvial fan, the Middle to Late Silurian shallow marine to tidal flat deposits and the Early and Middle Devonian terrestrial molasse are developed along the corridor Nanshan. The shallowing-upward succession from subabyssal flysch, shallow marine, tidal flat to terrestrial molasse and its gradually narrowed regional distribution demonstrate that the foreland basin experienced the transition from flysch stage to molasse stage during the Silurian and Devonian time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigates the urban heat island effect in Singapore and examines the key factors causing this effect. The possibilities of improving heat extraction rate by optimizing air flow in selected hot spots were explored. The effect of building geometry, façade materials and the location of air-conditioning condensers on the outdoor air temperature was explored using computational fluid dynamics (CFD) simulations. It was found that at very low wind speeds, the effect of façade materials and their colours was very significant and the temperature at the middle of a narrow canyon increased up to 2.5 °C with the façade material having lower albedo. It was also found that strategically placing a few high-rise towers will enhance the air flow inside the canyon thereby reducing the air temperature. Adopting an optimum H/W ratio for the canyons increased the velocity by up to 35% and reduced the corresponding temperature by up to 0.7 °C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Typical contourite deposits associated with submarine turbidite fan deposits are recognized for the first time from the Lower Devonian Liptrap Formation at Cape Liatrap, Victoria in southeast Australia. The contourites are well integrated within the turbidite fan deposits and are characterized by thin (5–8 cm), lenticular, well-sorted coarse-grained siltstones to fine-grained sandstones with current-ripples and cross beddings. The palaeocurrent directions of the turbidite fan and contourites are perpendicular to each other, with the former directed generally westward while the latter varying from 165° to 190° southward. In view of the facies types and architecture, we suggest that the turbidite fan was developed at the base of a westward inclined palaeo-slope, at the front of which the contourites were deposited as a result of southward flowing deep-sea contour (geostrophic) currents. The depositional setting interpreted for the Liptrap Formation thus may provide a provisional model for the Lower Devonian continental slope and abyssal basin environment in the southeastern part of the Melbourne Trough.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An ichnoassemblage of 10 ichnospecies is described for the first time from the Late Silurian Melbourne Formation at Studley Park, Victoria, southeastern Australia. The ichnofauna is preserved in a typical deep-water turbidite succession of alternating thin- to thick-bedded sandstone and thin- to medium-bedded mudrocks. Trace fossils observed within the study site have been assigned to three main ichnofacies. Ichnofacies 1 is best developed on the linguoid-rippled upper surface of thin sandstone beds and includes Laevicyclus, Aulichnites, Nereites, Helminthoidichnites, small Chondrites and possible Zoophycos. Ichnofacies 2 is very similar to Ichnofacies 1 in ichnospecies composition but instead contains large forms of Chondrites together with other thin burrow types usually poorly preserved and in very low abundance compared with Ichnofacies 1. Ichnofacies 3 is preserved mainly as casts on the underside of medium- to thick-bedded turbiditic sandstones, and has a very low diversity, with Planolites being the most common trace. A detailed analysis of the ichnofabrics and tiering structures of these ichnofacies suggest that Ichnofacies 1 and 3 represent "simple tiering’, in contrast to Ichnofacies 2, which is more characteristic of 'complex tiering’. Despite the differences in ichnospecies composition and ichnofabrics between the three recognized ichnofacies, the collective ichnoassemblage from the study site can be assigned confidently to the Nereites ichnofacies and is, therefore, interpreted to have formed in a distal submarine fan environment of lower bathyal to abyssal depth. Further, it is possible to recognize two main subenvironments within this deep-sea setting to account for the differences between the ichnofacies. Ichnofacies 1 and 2 are interpreted to represent a typical Nereites ichnofacies located on a level basin floor subenvironment of relatively low energy conditions at the distal end of a submarine fan deposit. In comparison, Ichnofacies 3 is dominated by Planolites with rare other facies-crossing trace fossil forms, and lacks Nereites. It is, therefore, best interpreted as representing a relatively high-energy environment, possibly a distributary channel near the distal end of the submarine fan system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

 Urban Heat Island (UHI) has become a growing concern to the quality of densely built urban environments, particularly in tropical cities. Wind speed has widely been reported to have decreased the intensity of heat island effect in urban areas. The cooling effect of the wind helps to mitigate the adverse effects of heat island on the micro climate and human thermal comfort. This paper investigates the existence of heat island in Muar, one of the fast growing cities in southern part of Malaysia and its possible causes, and then examines the effects of different urban geometry on the wind flow. The results of this study indicate that the chaotic development in Muar has caused reduced ventilation in urban canyons. The heat island intensity in the city center was recorded as 4. °C during the day and 3.2. °C during the night. Investigation of various urban geometry modifications showed that step up configuration was the most effective geometry as it can distribute the wind evenly allowing the wind to reach even the leeward side of each building. © 2014 Elsevier Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coasts composed of resistant lithologies such as granite are generally highly resistant to erosion. They tend to evolve over multiple sea level cycles with highstands acting to remove subaerially weathered material. This often results in a landscape dominated by plunging cliffs with shore platforms rarely occurring. The long-term evolution of these landforms means that throughout the Quaternary these coasts have been variably exposed to different sea level elevations which means erosion may have been concentrated at different elevations from today. Investigations of the submarine landscape of granitic coasts have however been hindered by an inability to accurately image the nearshore morphology. Only with the advent of multibeam sonar and aerial laser surveying can topographic data now be seamlessly collected from above and below sea level. This study tests the utility of these techniques and finds that very accurate measurements can be made of the nearshore thereby allowing researchers to study the submarine profile with the same accuracy as the subaerial profile. From a combination of terrestrial and marine LiDAR data with multibeam sonar data, it is found that the morphology of granite domes is virtually unaffected by erosion at sea level. It appears that evolution of these landscapes on the coast is a very slow process with modern sea level acting only to remove subaerially weathered debris. The size and orientation of the joints determines the erosional potential of the granite. Where joints are densely spaced (<2 m apart) or the bedrock is highly weathered can semi-horizontal surfaces form.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Seafloors of unconsolidated sediment are highly dynamic features; eroding or accumulating under the action of tides, waves and currents. Assessing which areas of the seafloor experienced change and measuring the corresponding volumes involved provide insights into these important active sedimentation processes. Computing the difference between Digital Elevation Models (DEMs) obtained from repeat Multibeam Echosounders (MBES) surveys has become a common technique to identify these areas, but the uncertainty in these datasets considerably affects the estimation of the volumes displaced. The two main techniques used to take into account uncertainty in volume estimations are the limitation of calculations to areas experiencing a change in depth beyond a chosen threshold, and the computation of volumetric confidence intervals. However, these techniques are still in their infancy and, as a result, are often crude, seldom used or poorly understood. In this article, we explored a number of possible methodological advances to address this issue, including: (1) using the uncertainty information provided by the MBES data processing algorithm CUBE, (2) adapting fluvial geomorphology techniques for volume calculations using spatially variable thresholds and (3) volumetric histograms. The nearshore seabed off Warrnambool harbour - located in the highly energetic southwest Victorian coast, Australia - was used as a test site. Four consecutive MBES surveys were carried out over a four-months period. The difference between consecutive DEMs revealed an area near the beach experiencing large sediment transfers - mostly erosion - and an area of reef experiencing increasing deposition from the advance of a nearby sediment sheet. The volumes of sediment displaced in these two areas were calculated using the techniques described above, both traditionally and using the suggested improvements. We compared the results and discussed the applicability of the new methodological improvements. We found that the spatially variable uncertainty derived from the CUBE algorithm provided the best results (i.e. smaller confidence intervals), but that similar results can be obtained using as a fixed uncertainty value derived from a reference area under a number of operational conditions.