15 resultados para Strain-path reversal

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold drawing is a process that sizes and smooths the surface of steel before it is cold headed to produce bolts. The effect of the changes in the mechanical properties due to cold drawing on the surface strain and ductility during the upsetting process was analysed showing that the stress and strain state can be more readily altered by changes in the process conditions (friction and height-to-diameter ratio) to cause greater increase in the failure strains than can be achieved by pre-drawing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of strain path reversal on the macroscopic orientation of microbands in AA5052 have been studied using high resolution electron backscatter diffraction. Deformation was carried using two equal steps of forward/forward or forward/reverse torsion at a temperature of 300°C and strain rate of 1s-1 to a total equivalent tensile strain of 0.5. In both cases microbands were found in the majority of grains examined with many having more than one set. The microbands appear to cluster at specific angles to the macroscopic deformation. For the forward/forward condition microbands clustered around -20° and +45° to the maximum principle stress direction and at ± 30-35° to the principal strain direction. For the forward/reverse condition significantly more spread in microband angle was observed though peaks were visible at ±35° with respect to principal stress direction and at -40° and +30° with respect to the principal strain direction of the reverse torsion. This suggests the microbands formed in the forward deformation have or are dissolving and any new microbands formed are related to the deformation conditions of the final strain path.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work is to develop a kinematic hardening effect graph (KHEG) which can be used to evaluate the effect of kinematic hardening on the model accuracy of numerical sheet metal forming simulations and this without the need of complex material characterisation. The virtual manufacturing process design and optimisation depends on the accuracy of the constitutive models used to represent material behaviour. Under reverse strain paths the Bauschinger effect phenomenon is modelled using kinematic hardening models. However, due to the complexity of the experimental testing required to characterise this phenomenon in this work the KHEG is presented as an indicator to evaluate the potential benefit of carrying out these tests. The tool is validated with the classic three point bending process and the U-channel width drawbead process. In the same way, the capability of the KHEG to identify effects in forming processes that do not include forming strain reversals is identified.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent years, advanced high strength steels (AHSS) have been used in a wide range of automotive applications; they may have property variations through the thickness and the properties may also be dependent of prior processing including pre-straining. In order to model forming processes precisely using, for example, finite element analysis, it is important that material input data should adequately reflect these effects. It is known that shape defects in roll forming are related to small strains in material that has undergone prior deformation in a different strain path. Much research has already been performed on the change in the Young’s Modulus once a steel sheet has been plastically deformed,however many of these tests have only been conducted using tensile testing, and therefore may not take into account differences in compressive and tensile unloading. This research investigates the effect of tensile pre-straining on bending behaviour for various types of material;in bending, one half of the sheet will load and unload in compression and hence experience deformation under a reversed stress. Four different materials were pre-strained in tension with 1%, 3%, 7%, 11% and 25% elongation. Using a free bending test, moment curvature diagrams were obtained for bending and unloading. The results showed that the characteristics of the moment curvature diagram depended on the degree of pre-straining; more highly strained samples showed an earlier elastic-plastic transformation and a decreased Young's Modulus during unloading. This was compared to previous literature results using only tensile tests. Our results could influence the modeling of springback in low tension sheet operations, such as roll forming.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The characterisation of strain path with respect to the directionality of defect formation is discussed. The criterion of non-monotonic strain path is used in the scalar and tensor models for damage accumulation and recovery. Comparable analysis of models and their verification has been obtained by simulation of crack initiation in a two-stage metal forming operation consisting of wire drawing followed by constrained upsetting.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Forming Limit Diagram (FLD) is a conventional failure diagram to estimate necking limits of sheet metal for proportional loading conditions. Previous studies reveal that the FLD is not suitable for predicting the influence of nonlinear strain paths. This paper presents methodical comparison among all common available strain path independent strain/stress based limiting criteria. All the strain path independent strain based limiting criteria (Traditional Failure Diagram (TFD), Extended Forming Limit Diagram (XFLD), Extended Stress Ratio Based Forming Limit Diagram (ESRFLD), and Polar Effective Plastic StrainDiagram (PEPSD)) and stress based limiting criteria (Traditional Stress based Failure Diagram (TFSD), Stress Based Forming Limit Diagram (FLSD), Stress Ratio and Stress Based Forming Limit Diagram (SRFLSD), Extended Stress Based Forming Limit Diagram (XFLSD), and Polar Effective Stress Diagram (PESSD)) are approximately path-independent for smaller amount of pre-straining and path dependent for large pre-straining conditions. From advance image correlation technique precisely determination of local strains near necked area is possible today. However direct determination of local stresses near necked area is not possible. Therefore, local stresses and equivalent stress are determined by employing both yield criterion and strain-hardening law. Similarly equivalent strain is calculated by the use of yield criterion. Therefore, the choice of yield criterion has an impact on the results for TFD, XFLD, ESRFLD and PEPSD. However, selections of both yield criterion and strain-hardening law have substantial influence on the results for TFSD, FLSD, SRFLSD, XFLSD and PESSD. The inherent calculation error can be minimized by generation of experimental data for each material and then selection of representable yield criterion and strain-hardening law. Improvement of experimental techniques and generation of rigorous material data bank in various strain paths may help researchers to diagnose and resolve the issue. TFD, TFSD and XFLSD have inherent variables to take care the effect of through thickness stress, however rigorous experimental verification is needed before the field application.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A copper bar was drawn while a lead bar was extruded through a cyclically twisting die in a specifically designed experimental rig. The drawing/extrusion load fluctuated at the same frequency as that of die twisting. The load tended to be at a level of monotonic deformation when the die was changing direction. The degree of the reduction in load for both the drawing and extrusion processes depended on the deformation conditions and requires optimisation for industrial application.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of hot-compression tests and Taylor-model simulations were carried out with the intention of developing a simple expression for the proof stress of magnesium alloy AZ31 during hot working. A crude approximation of wrought textures as a mixture of a single ideal texture component and a random background was employed. The shears carried by each deformation system were calculated using a full-constraint Taylor model for a selection of ideal orientations as well as for random textures. These shears, in combination with the measured proof stresses, were employed to estimate the critical resolved shear stresses for basal slip, prismatic slip, ⟨c+a⟩ second-order pyramidal slip, and { } twinning. The model thus established provides a semianalytical estimation of the proof stress (a one-off Taylor simulation is required) and also indicates whether or not twinning is expected. The approach is valid for temperatures between ∼150 °C and ∼450 °C, depending on the texture, strain rate, and strain path.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the current work, constitutive models are developed to describe the cyclic hardening and softening led by the strain path chaneg.  The contribution of deformation conditions such as drawing and extrusion speed, cyclic rotating angle on the drawing and extrusion force will be investigated.  The development of such constitutive models will provide insight into the optimization of operation conditions to explore the potential of industrial applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

 This research investigates the deformation mechanism in incremental sheet forming (ISF) with relation to necking and failure. A strain-based forming limit criterion is widely used in sheet-metal forming industry to predict necking. However, this criterion is strictly valid only when the strain path is linear throughout the deformation process. Where the strain path in ISF is often found to be severely nonlinear throughout the deformation history. Therefore, the practice of using a strain-based forming limit criterion often leads to erroneous assessments of formability and failure prediction. On the other hands, stress-based forming limit is insensitive against any changes in the strain path and hence it is used to model the necking and fracture limits. Simulation model is evaluated for a single point incremental forming using AA 6022-T4E32 and checked the accuracy against experiments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A strain-based forming limit criterion is widely used in sheet-metal forming industry to predict necking. However, this criterion is usually valid when the strain path is linear throughout the deformation process [1]. Strain path in incremental sheet forming is often found to be severely nonlinear throughout the deformation history. Therefore, the practice of using a strain-based forming limit criterion often leads to erroneous assessments of formability and failure prediction. On the other hands, stress-based forming limit is insensitive against any changes in the strain path and hence it is first used to model the necking limit in incremental sheet forming. The stress-based forming limit is also combined with the fracture limit based on maximum shear stress criterion to show necking and fracture together. A derivation for a general mapping method from strain-based FLC to stress-based FLC using a non-quadratic yield function has been made. Simulation model is evaluated for a single point incremental forming using AA 6022-T43, and checked the accuracy against experiments. By using the path-independent necking and fracture limits, it is able to explain the deformation mechanism successfully in incremental sheet forming. The proposed model has given a good scientific basis for the development of ISF under nonlinear strain path and its usability over conventional sheet forming process as well.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Samples of oxygen-free high conductivity (OFHC) coarse-grained (CG) and ultrafine-grained (UFG) copper were micro-extruded to an equivalent strain of 2.8 in one pass at room temperature. Samples of the OFHC copper were annealed at 650C for 2 h to produce CG copper. Some samples were subsequently processed by equal channel angular pressing of eight passes, route Bc, at room temperature to produce the UFG material. Crystallographic texture and misorientation distributions were obtained locally from EBSD mappings at different radial positions after micro-extrusion. To model the strain path during micro-extrusion, the analytic flow line model of Altan etal. [J Mater. Process. Tech. 33 (1992) p.263] was used and also validated by finite element calculations. Modelling was carried out using the viscoplastic self-consistent (VPSC) model and a recently developed grain refinement model. The results showed large texture variations along the cross-section of the extruded sample for both UFG and CG copper. These cyclic drawing textures in UFG copper were simulated in good agreement with experiments using the presented modelling framework.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of volume fraction and hardness of martensite on the Bauschinger effect in Dual Phase (DP) steel was investigated for strain levels close to those observed in automotive stamping. Five different grades of DP steel were produced by controlled heat treatment allowing the examination of the Bauschinger effect for three different volume fractions of martensite and three levels of martensite hardness. Compression-tension and shear reversal tests were performed to examine the Bauschinger effect at high levels of forming strain. Good correlation between the shear reversal and the compression-tension test was observed suggesting that for DP steel, shear stress strain data, converted to equivalent stress-strain, may be applied directly to characterize kinematic hardening behavior for numerical simulations. Permanent softening was observed following strain reversal and increased with martensite volume fraction and pre-strain level. While the Bauschinger ratio saturates at 3% pre-strain, the Bauschinger strain increases linearly with forming strain without showing saturation. This suggests that to model material behavior accurately in forming processes involving complex loading paths and high levels of strain, test data generated at high strain is required.