73 resultados para Steel and iron privatization

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Galvanneal steel is considered to be better for automotive applications than its counterpart, galvanized steel, mainly because of its superior coating and surface properties. Galvanneal steel is produced by hot dipping sheet steel in a bath of molten zinc with small, controlled, levels of aluminium, followed by annealing which creates a Fe-Zn intermetallic layer. This intermetallic layer of the coating improves spot weldability and improves subsequent paint appearance. However, if the microstructure of the coating is not properly controlled and forming parameters are not properly selected, wear of the coating could occur during stamping. Frictional sliding of the sheet between the tool surfaces results in considerable amount of coating loss. An Interstitial Free steel with a Galvanneal coating of nominally 60g/m2 was used for the laboratory experiments. Flat Face Friction (FFF) tests were performed with different forming conditions and lubricants to simulate the frictional sliding in stamping. Glow-Discharge Optical Emission Spectrometry (DG-OES) was used to measure the change in the coating thickness during sliding. Optical microscopy was considered for imaging the surfaces as well as an optical method to compare the changes in the coating thickness during the forming. The change to the Galvanneal coating thickness was found to be a function of forming parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trimming experiments were conducted on sheet metals including two drawing steels, an aluminum alloy and a magnesium alloy, using a specially designed die in a mechanical press. The punch-die clearance was varied and data obtained on the rollover and burr height as a function of the clearance. Samples were also partially trimmed to examine crack initiation, the generation of the fracture surface profile and mechanism of burr formation. The results showed that while the burr height and rollover depth generally increased with increasing clearance for all examined materials, there were differences in the fracture surface profile shape, the burr shape, and the mechanism of burr formation, between the two steels and the two light alloys. The major cause of these differences appeared to be the rate of crack propagation through the sheet material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The shearing behavior of a drawing-steel and aluminum alloy were investigated using hardness contours of partially deformed samples and a finite element model of the trimming process. Results showed that the stress and strain distributions within the work-piece were more strongly dependent on the punch penetration than the material properties of the work-piece. Differences in the final fracture surface profile and burr formation of the drawing-steel and aluminum alloy were a consequence of the shape of the stress and strain distribution when the crack in the sample became unstable, not when it was initiated. Results and existing literature suggest that a correlation may exist between the strain-rate sensitivity of the work-piece material and the burr mechanism and fracture surface profile of the trimmed part.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The toxic milk (tx) mouse is a rodent model for Wilson disease, an inherited disorder of copper overload. Here we assessed the effect of copper accumulation in the tx mouse on zinc and iron metabolism. Copper, zinc and iron concentrations were determined in the liver, kidney, spleen and brain of control and copper-loaded animals by atomic absorption spectroscopy. Copper concentration increased dramatically in the liver, and was also significantly higher in the spleen, kidney and brain of control tx mice in the first few months of life compared with normal DL mice. Hepatic zinc was increased with age in the tx mouse, but zinc concentrations in the other organs were normal. Liver and kidney iron concentrations were significantly lower at birth in tx mice, but increased quickly to be comparable with control mice by 2 months of age. Iron concentration in the spleen was significantly higher in tx mice, but was lower in 5 day old tx pups. Copper-loading studies showed that normal DL mice ingesting 300 mg/l copper in their diet for 3 months maintained normal liver, kidney and brain copper, zinc and iron levels. Copper-loading of tx mice did not increase the already high liver copper concentrations, but spleen and brain copper concentrations were increased. Despite a significant elevation of copper in the brain of the copper-loaded tx mice no behavioural changes were observed. The livers of copper-loaded tx mice had a lower zinc concentration than control tx mice, whilst the kidney had double the concentration of iron suggesting that there was increased erythrocyte hemolysis in the copper-loaded mutants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This data is the result of an investigation into the effect of grain orientation on the substructure development of 304 stainless steel and a Ni-30wt.%Fe alloy. Both alloys have been used as model alloys to study the high temperature deformation of austenite. The development of the dislocation substructure as a function of strain, temperature and grain orientation was investigated using a combination of electron backscatterd diffraction (EBSD) and transmission electron microscopy (TEM).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents finite-element method simulation results of current distribution in an aluminum electrolytic cell. The model uses one quarter of the cell as a computational domain assuming longitudinal (along the length of the cell) and transverse axes of symmetries. The purpose of this work is to closely examine the impact of steel and copper collector bars on the cell current distribution. The findings indicated that an inclined steel collector bar (φ = 1°) can save up to 10–12 mV from the cathode lining in comparison to a horizontal 100 mm × 150-mm steel collector bar. It is predicted that a copper collector bar has a much higher potential of saving cathode voltage drop (CVD) and has a greater impact on the overall current distribution in the cell. A copper collector bar with 72% of cathode length and size of 100 mm × 150 mm is predicted to have more than 150 mV savings in cathode lining. In addition, a significant improvement in current distribution over the entire cathode surface is achieved when compared with a similar size of steel collector bar. There is a reduction of more than 70% in peak current density value due to the higher conductivity of copper. Comparisons between steel and copper collector bars with different sizes are discussed in terms CVD and current density distribution. The most important aspect of the findings is to recognize the influence of copper collector bars on the current distribution in molten metal. Lorentz fields are evaluated at different sizes of steel and copper collector bars. The simulation predicts that there is 50% decrease in Lorentz force due to the improvement in current distribution in the molten metal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work investigated the evolution of strain-induced NbC precipitates in a model austenitic Fe-30Ni-Nb steel deformed at 925 °C to a strain of 0.2 during post-deformation holding between 3 and 1000 s and their effect on the reloading flow stress. The precipitate particles preferentially nucleated on the nodes of the periodic dislocation networks constituting microband walls. Holding for 10 s resulted in the formation of fine, largely coherent NbC particles with a mean diameter of ∼5 nm, which displayed a cube-on-cube orientation relationship with austenite and caused the maximum increase in the reloading steady-state flow stress. A further increase in the holding time from 30 to 1000 s led to the formation of semi-coherent, gradually coarser and more widely spaced particles with a mean diameter of 8 nm and above, which led to a gradual decrease in the reloading steady-state flow stress. The holding time increase resulted in progressive disintegration of the dislocation substructure and dislocation annihilation through static recovery processes, which was also reflected by the measured softening fractions. The precipitate particle shape changed during post-deformation annealing from elliptical to faceted octahedral and subsequently to tetra-kai-decahedral. © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: This study aimed to evaluate the potential antimicrobial efficacy of alginate gel-encapsulated ceramic nanocarriers loaded with iron-saturated bovine lactoferrin (Fe-bLf) nanocarriers/nanocapsules (AEC-CP-Fe-bLf NCs). Materials & methods: The antimicrobial activities of non-nanoformulated apo (iron free), Fe-bLf and native forms of Australian bLf against pathogenic Salmonella typhimurium (wild strain) were studied in vitro. The efficacy of AEC-CP-Fe-bLf NCs were checked in vivo using Balb/c mice model. Results: The study revealed that native bLf is more effective in combating infection than the conventional drug ciprofloxacin (0.4 mg/ml). The efficacy of the drug was also revealed in vivo when BALB/c mice that, after being challenged with S. typhimurium (200 μl of 10(8) CFU/ml suspension), were fed orally with a nanoformulated bLf diet and the infection was observed to be eliminated. However, chronic infection developed in the group of infected mice that did not receive any drug treatment, as well as the mice treated with ciprofloxacin. The immune response to bacterial infection and to various drug treatments thereafter was studied in the mice. Conclusion: The study concludes that bLf and nanoformulated Fe-bLf are more effective in the treatment of Salmonella-infected mice than ciprofloxacin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Iron binding, naturally occurring protein bovine lactoferrin (bLf) has attracted attention as a safe anti-cancer agent capable of inducing apoptosis. Naturally, bLf exists partially saturated (15-20%) with Fe(3+) however, it has been demonstrated that manipulating the saturation state can enhance bLf's anti-cancer activities. METHODS: Apo-bLf (Fe(3+) free) and Fe-bLf (>90% Fe(3+) Saturated) were therefore, tested in MDA-MB-231 and MCF-7 human breast cancer cells in terms of cytotoxicity, proliferation, migration and invasion. Annexin-V Fluos staining was also employed in addition to apoptotic protein arrays and Western blotting to determine the specific mechanism of bLf-induced apoptosis with a key focus on p53 and inhibitor of apoptosis proteins (IAP), specifically survivin. RESULTS: Apo-bLf induced significantly greater cytotoxicity and reduction in cell proliferation in both cancer cells showing a time and dose dependent effect. Importantly, no cytotoxicity was detected in normal MCF-10-2A cells. Both forms of bLf significantly reduced cell invasion in cancer cells. Key apoptotic molecules including p53, Bcl-2 family proteins, IAP members and their inhibitors were significantly modulated by both forms of bLf, though differentially in each cell line. Most interestingly, both Apo-bLf and Fe-bLf completely inhibited the expression of survivin protein (key IAP), after 48 h at 30 and 40 nM in cancer cells. CONCLUSIONS: The capacity of these forms of bLf to target survivin expression and modulation of apoptosis demonstrates an exciting potential for bLf as an anti-cancer therapeutic in the existing void of survivin inhibitors, with a lack of successful inhibitors in the clinical management of cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental evidence suggests that nicotianamine (NA) is involved in the complexation of metal ions in some metal-hyperaccumulating plants. Closely-related nickel (Ni)- and zinc (Zn)-hyperaccumulating species were studied to determine whether a correlation exists between the Ni and Zn concentrations and NA in foliar tissues. A liquid chromatography–mass spectrometry (LC-MS) procedure was developed to quantify the NA and amino acid contents using the derivatizing agent 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. A strong correlation emerged between Ni and NA, but not between Zn and NA. Concentrations of NA and l-histidine (His) also increased in response to higher Ni concentrations in the hydroponic solution supplied to a serpentine population of Thlaspi caerulescens. An inversely proportional correlation was found between the iron (Fe) and Ni concentrations in the leaves. Correlations were also found between Zn and asparagine. The results obtained in this study suggest that NA is involved in hyperaccumulation of Ni but not Zn. The inverse proportionality between the Ni and Fe concentrations in the leaf may suggest that Ni and Fe compete for complexation to NA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fe-C-Cr-Nb-B-Mo alloy powder and AISI 420 SS powder are deposited using laser cladding to increase the hardness for wear resistant applications. Mixtures from 0 to 100 wt.% were evaluated to understand the effect on the elemental composition, microstructure, phases, and microhardness. The mixture of carbon, boron and niobium in the Fe-C-Cr-Nb-B-Mo alloy powder introduces complex carbides into a Fe-based matrix of AISI 420 SS which increases its hardness. Hardness increased linearly with increasing Fe-C-Cr-Nb-B-Mo alloy, but substantial micro-cracking was observed in the clad layer at additions of 60 wt.% and above; related to a transition from a hypoeutectic alloy containing α-Fe/α' dendrites with an (Fe,Cr)2B and γ-Fe eutectic to primary and continuous carbo-borides M2B (where M represents Fe and Cr) and M23(B,C)6 carbides (where M represents Fe, Cr, Mo) with MC particles (where M represents Nb and Mo). The highest average hardness, for an alloy without micro-cracking, of 952 HV was observed in a 40 wt.% alloy. High stress abrasive scratch testing was conducted on all alloys at various loads (500, 1500, 2500 N). Alloy content was found to have a strong effect on the wear mode and the abrasive wear rate, and the presence of micro-cracks was detrimental to abrasive wear resistance.