171 resultados para Steel, High strength

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the major challenges in assessing the mechanical properties of recovery annealed steel is the strain localization that occurs almost immediately on the formation of the first Lüders band, such that no or limited propagation of the Lüders band occurs along the tensile coupon. The stress raiser associated with the geometry of the standard tensile coupon means that this plastic deformation is often completely outside the standard extensometers on the coupon. Hence, no strain is measured during the test. While this is not important for assessing the tensile strength of the steel, it does mean that the strain related properties, such as the elastic limit of the steel, cannot be measured using standard testing techniques.This work addresses this issue by examining three techniques for ensuring that the strain occurs inside the extensometer. It is shown that the best technique is the extended extensometer, where the gauge length covers slightly more than the tensile coupon parallel length. While this leads to some variation in the width of the material being measured, compensation can be be made by adjusting the strain to correct the Young's Modulus.This technique has direct implications not just for recovery annealed steels, but for other high strength, low work hardening materials such as ultrafine ferrite. A particular requirement of these high strength steels in structural applications is a high elastic limit; hence, measurement of the strain related properties for these high strength materials must be considered vital in their mechanical assessment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increased fuel economy, combined with the need for the improved safety has generated the development of new hot-rolled high-strength low-alloy (HSLA) and multiphase steels such as dual-phase or transformation-induced plasticity steels with improved ductility without sacrificing strength and crash resistance. However, the modern multiphase steels with good strength-ductility balance showed deteriorated stretch-flangeability due to the stress concentration region between the soft ferrite and hard martensite phases [1]. Ferritic, hot-rolled steels can provide good local elongation and, in turn, good stretch-flangeability [2]. However, conventional HSLA ferritic steels only have a tensile strength of not, vert, similar600 MPa, while steels for the automotive industry are now required to have a high tensile strength of not, vert, similar780 MPa, with excellent elongation and stretch-flangeability [1]. This level of strength and stretch-flangeability can only be achieved by precipitation hardening of the ferrite matrix with very fine precipitates and by ferrite grain refinement. It has been suggested that Mo [3] and Ti [4] should be added to form carbides and decrease the coiling temperature to 650 °C since only a low precipitation temperature can provide the precipitation refinement [4]. These particles appeared to be (Ti, Mo)C, with a cubic lattice and a parameter of 0.433 nm, and they were aligned in rows [4]. It was reported [4] that the formation of these very fine carbides led to an increase in strength of not, vert, similar300 MPa. However, the detailed analysis of these particles has not been performed to date due to their nanoscale size. The aim of this work was to carry out a detailed investigation using atom probe tomography (APT) of precipitates formed in hot-rolled low-carbon steel containing additions Ti and Mo.

The investigated low-carbon steel, containing Fe–0.1C–1.24Mn–0.03Si–0.11Cr–0.11Mo–0.09Ti–0.091Al at.%, was produced by hot rolling. The processing route has been described in detail elsewhere [5] European Patent Application, 1616970 A1, 18.01.2006.[5]. The microstructure was characterised by transmission electron microscopy (TEM) on a Philips CM 20, operated at 200 kV using thin foil and carbon replica techniques. Qualitative energy dispersive X-ray spectroscopy (EDXS) was used to analyse the chemical composition of particles. The atomic level of particle characterisation was performed at the University of Sydney using a local electrode atom probe [6]. APT was carried out using a pulse repetition rate of 200 kHz and a 20% pulse fraction on the sample with temperature of 80 K. The extent of solute-enriched regions (radius of gyration) and the local solute concentrations in these regions were estimated using the maximum separation envelope method with a grid spacing of 0.1 nm [7]. A maximum separation distance between the atoms of interest of dmax = 1 nm was used.

The microstructure of the steel consisted of two types of fine ferrite grains: (i) small recrystallised grains with an average grain size of 1.4 ± 0.2 μm; and (ii) grains with a high dislocation density (5.8 ± 1.4 × 1014 m−2) and an average grain size of 1.9 ± 0.1 μm in thickness and 2.7 ± 0.1 μm in length (Fig. 1a). Some grains with high dislocation density displayed an elongated shape with Widmanstätten side plates and also the formation of cells and subgrains (Fig. 1a). The volume fraction of recrystallised grains was 34 ± 8%.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

While advanced high strength steels (AHSS) have numerous advantages for the automotive industry, they can be susceptible to interfacial fracture when spot-welded. In this study, the susceptibility of interfacial fracture to spot-weld microstructure and hardness is examined, as well as the corresponding relationships between fatigue, overload performance, and interfacial fracture for a TRIP (transformation induced plasticity) steel. Simple post-weld heat-treatments were used to alter the weld microstructure. The effect on interfacial fracture of diluting the weld pool by welding the TRIP material to non-TRIP steel was examined, along with the effect of altering the base material microstructure. Results show that weld hardness is not a good indicator of either the susceptibility to interfacial fracture, or the strength of the joint, and that interfacial fracture does not necessarily lead to a decrease in strength compared to conventional weld-failure mechanisms, i.e. button pullout. It was also found that while interfacial fracture does affect low cycle to failure behavior, there was no effect on high cycle fatigue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of low-strain deformation behavior on curl and springback in advanced high strength steels (AHSS) was assessed using a bend-under-tension test. The effect of yielding behavior on curl and springback was examined by heat-treating two dual-phase steels to induce yield point elongation, while keeping a relatively constant tensile strength and a constant sheet thickness. A dual-phase and TRIP steel with similar initial thickness and tensile strengths were also examined to investigate the effect of work-hardening on curl and springback. It is shown that while current understanding limits prediction of curl and springback in bending under tension using only the initial sheet thickness and tensile strength, both the yielding and work-hardening behavior can affect the results. Explanations for these effects are proposed in terms of the discontinuous yielding and flow stress in the materials.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Car manufacturers are under pressure to reduce vehicle mass while maintaining comfort and passenger safety for current and future vehicles. To meet this demand the steel industry has developed Advanced High Strength Steels (AHSS) that promise higher strength and improved formability compared to conventional steel grades. Even though significant research has already been performed to evaluate the material properties and forming behaviour of most AHSS types, only a limited literature is available on their necking and fracture behaviour and the effect on formability. This paper examines and compares the thinning, necking and fracture behaviour of two AHSS and one conventional steel type, namely TRIP, DP and HSLA. Uniaxial, plane and biaxial strain conditions are investigated by tensile, cup drawing and stretch forming tests and by using numerical methods. The test results indicate that significant differences exist in necking and fracture behaviour between all three steel types.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microstructure-property relationship in conventional high strength low alloy (HSLA) steel was evaluated using data obtained from transmission electron microscopy (TEM) and atom probe tomography (APT). Atom probe tomography allowed the characterisation of fine TiC particles with average radius of 3±1·2 nm that were not observed by TEM. The increase in the yield strength of steel due to the presence of fine precipitates was calculated to be 128 MPa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dataset is comprised of a spreadsheet of simulation result files, cross-section geometries of stamped parts, strain results of cross-section of stamped parts, simulation data (strain stress displacement energies), and variation data of material properties of a single coil. This data is a collection of both experimental and simulation results from industrial and laboratory stamping of advanced high strength steels (AHSS). The steels that were stamped were a typical high-strength low-alloy (HSLA) steel, a transformation-induced plasticity (TRIP) steel, a super HSLA steel, and a dual phase (DP) steel. The selected part was an automatic Ford Falcon front cross-member component using the Ford Geelong stamping plant. The variation of the material and stamped parts was also collected.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of pre-straining and bake-hardening on the mechanical properties of thermomechanically processed 0.2C-1.5Si-1.5Mn-0.2Mo-0.004Nb (wt%) steel was analysed using tensile test, transmission electron microscopy (TEM) and atom probe tomography (APT). This steel after processing had high strength (~1200MPa) and good ductility (~20%) due to the formation of fully bainitic microstructure with nano-layers of bainitic ferrite and retained austenite. The bake hardening (BH) of pre-strained (PS) samples increased the yield strength of steel up to 690MPa and showed the bake-hardening response of 220MPa due to the operation of several strengthening mechanisms such as transformation induced plasticity during pre-straining and pinning the dislocations by carbon during bake-hardening treatment. The carbon content of the bainitic ferrite and retained austenite before and after bake-hardening treatment, the solute distribution between these phases and the local composition of fine Fe-C clusters and particles formed during bake-hardening treatment was calculated using APT. The bainitic ferrite and retained austenite microstructural characteristics such as thickness of the layers and their dislocation density before and after bake-hardening treatment were studied using TEM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The multi-phase structure of a novel low-alloy transformation induced plasticity (TRIP) steel was designed through experimental analysis. The evolutions of both microstructure and mechanical properties during the two-stage heat treatment were analyzed. The phase transformations during the intercritical annealing and the isothermal bainitic transformation were investigated by means of dilatometry. It was shown that two types of C diffusion were detected during intercritical annealing and a complex microstructure was formed after heat treatment. The processing parameters were selected in such a way to obtain microstructures with systematically different volume fractions of ferrite, bainite and retained austenite. The volume fractions of ferrite and retained austenite were found to be two main factors controlling the ductility. Furthermore, a high volume fraction of C-rich retained austenite, which was stabilized at room temperature, was the origin of a TRIP effect. The resulting material demonstrates a significant improvement in the ultimate tensile strength (1077. MPa) with good uniform elongation (22.5%), as compared to conventional TRIP steels. © 2014 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The roll forming process is increasingly used in the automotive industry for the manufacture of structural and crash components from Ultra High Strength Steel (UHSS). Due to the high strength of UHSS (<1GPa) even small and commonly observed material property variations from coil to coil can result in significant changes in material yield and through that affect the final shape of the roll formed component. This requires the re-adjustment of tooling to compensate for shape defects and maintain part geometry resulting in costly downtimes of equipment. This paper presents a first step towards an in-line shape compensation method that based on the monitoring of roll load and torque allows for the estimation of shape defects and the subsequent re-adjustment of tooling for compensation. For this the effect of material property variation on common shape defects observed in the roll forming process as well as measurable process parameters such as roll load and torque needs to be understood. The effect of yield strength and material hardening on roll load and torque as well as longitudinal bow is investigated via experimental trials and numerical analysis. A regression analysis combined with Analysis of Variance (ANOVA) techniques is employed to establish the relationships between the process and material parameters and to determine their percentage influence on longitudinal bow, roll load and torque. The study will show that the level of longitudinal bow, one of the major shape defects observed in roll forming, can be estimated by variations in roll load and torque.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The phase transformation and precipitation in a high-strength low-alloy steel have been studied over a large range of cooling rates, and a continuous cooling transformation (CCT) diagram has been produced. These experiments are unique because the measurements were made from samples cooled directly from the melt, rather than in homogenized and re-heated billets. The purpose of this experimental design was to examine conditions pertinent to direct strip casting. At the highest cooling rates which simulate strip casting, the microstructure was fully bainitic with small regions of pearlite. At lower cooling rates, the fraction of polygonal ferrite increased and the pearlite regions became larger. The CCT diagram and the microstructural analysis showed that the precipitation of NbC is suppressed at high cooling rates, and is likely to be incomplete at intermediate cooling rates.