6 resultados para Spontaneously hypertensive rat (shr)

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low renal nitric oxide (NO) bioavailability contributes to the development and maintenance of chronic hypertension. We investigated whether impaired L-arginine transport contributes to low renal NO bioavailability in hypertension. Responses of renal medullary perfusion and NO concentration to renal arterial infusions of the L-arginine transport inhibitor L-lysine (10 μmol·kg−1·min−1; 30 min) and subsequent superimposition of L-arginine (100 μmol·kg−1·min−1; 30 min), the NO synthase inhibitor NG-nitro-L-arginine (2.4 mg/kg; iv bolus), and the NO donor sodium nitroprusside (0.24 μg·kg−1·min−1) were examined in Sprague-Dawley rats (SD) and spontaneously hypertensive rats (SHR). Renal medullary perfusion and NO concentration were measured by laser-Doppler flowmetry and polarographically, respectively, 5.5 mm below the kidney surface. Renal medullary NO concentration was less in SHR (53 ± 3 nM) compared with SD rats (108 ± 12 nM; P = 0.004). L-Lysine tended to reduce medullary perfusion (−15 ± 7%; P = 0.07) and reduced medullary NO concentration (−9 ± 3%; P = 0.03) while subsequent superimposition of L-arginine reversed these effects of L-lysine in SD rats. In SHR, L-lysine and subsequent superimposition of L-arginine did not significantly alter medullary perfusion or NO concentration. Collectively, these data suggest that renal L-arginine transport is impaired in SHR. Renal L-[3H]arginine transport was less in SHR compared with SD rats (P = 0.01). Accordingly, we conclude that impaired arginine transport contributes to low renal NO bioavailability observed in the SHR kidney.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: This study aimed to determine if 25 days of canola oil intake in the absence of excess dietary salt or together with salt loading affects antioxidant and oxidative stress markers in the circulation. A further aim was to determine the mRNA expression of NADPH oxidase subunits and superoxide dismutase (SOD) isoforms in the aorta of stroke-prone spontaneously hypertensive (SHRSP) rats.

Methods: Male SHRSP rats, were fed a defatted control diet containing 10% wt/wt soybean oil or a defatted treatment diet containing 10% wt/wt canola oil, and given tap water or water containing 1% NaCl. Blood was collected at the end of study for analysis of red blood cell (RBC) antioxidant enzymes, RBC and plasma malondialdehyde (MDA), plasma 8-isoprostane and plasma lipids. The aorta was removed and the mRNA expression of NOX2, p22phox, CuZn-SOD, Mn-SOD and EC-SOD were determined.

Results: In the absence of salt, canola oil reduced RBC SOD and glutathione peroxidase, and increased total cholesterol and LDL cholesterol compared with soybean oil. RBC glutathione peroxidase activity was significantly lower in both the salt loaded groups compared to the soybean oil only group. In addition, RBC MDA and plasma HDL cholesterol were significantly higher in both the salt loaded groups compared to the no salt groups. Plasma MDA concentration was higher and LDL cholesterol concentration lower in the canola oil group loaded with salt compared to the canola oil group without salt. The mRNA expression of NADPH oxidase subunits and SOD isoforms were significantly reduced in the canola oil group with salt compared to canola oil group without salt.

Conclusion: In conclusion, these results indicate that canola oil reduces antioxidant status and increases plasma lipids, which are risk factors for cardiovascular disease. However, canola oil in combination with salt intake increased MDA, a marker of lipid peroxidation and decreased NAPDH oxidase subunits and aortic SOD gene expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Canola oil shortens the life span of stroke-prone spontaneously hypertensive (SHRSP) rats compared with rats fed soybean oil when given as the sole dietary lipid source. One possible mechanism leading to the damage and deterioration of organs due to canola oil ingestion is oxidative stress. This study investigated the effect of canola oil intake on oxidative stress in this animal model.
Method: Male SHRSP rats, were fed a defatted control diet containing 10% wt/wt soybean oil or a defatted treatment diet containing 10% wt/wt canola oil, and given water containing 1% NaCl. Blood pressure was measured weekly. Blood was collected prior to beginning the diets and at the end of completion of the study for analysis of red blood cell (RBC) antioxidant enzymes, RBC and plasma malondialdehyde (MDA), plasma 8- isoprostane and plasma lipids.
Results: Canola oil ingestion significantly decreased the life span of SHRSP rats compared with soybean oil, 85.8 ± 1.1 and 98.3 ± 3.4 days, respectively. Systolic blood pressure increased over time with a significant difference between the diets at the 6th week of feeding. Canola oil ingestion significantly reduced RBC superoxide dismutase, glutathione peroxidase and catalase activities, total cholesterol and low-density lipoprotein cholesterol compared with soybean oil. There were no significant differences in RBC MDA concentration between canola oil fed and soybean oil fed rats. In contrast, plasma MDA and 8-isoprostane concentration was significantly lower in the canola oil group compared to the soybean oil group.
Conclusion: In conclusion, canola oil ingestion shortens the life span of SHRSP rats and leads to changes in oxidative status, despite an improvement in the plasma lipids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Left ventricular (LV) hypertrophy is a risk factor for cardiovascular death, but the genetic factors determining LV size and predisposition to hypertrophy are not well understood. We have previously linked the quantitative trait locus cardiac mass 22 (Cm22) on chromosome 2 with cardiac hypertrophy independent of blood pressure in the spontaneously hypertensive rat. From an original cross of spontaneously hypertensive rat with F344 rats, we derived a normotensive polygenic model of spontaneous cardiac hypertrophy, the hypertrophic heart rat (HHR) and its control strain, the normal heart rat (NHR).

METHODS AND RESULTS: To identify the genes and molecular mechanisms underlying spontaneous LV hypertrophy we sequenced the HHR genome with special focus on quantitative trait locus Cm22. For correlative analyses of function, we measured global RNA transcripts in LV of neonatal HHR and NHR and 198 neonatal rats of an HHR × NHR F2 crossbred population. Only one gene within locus Cm22 was differentially expressed in the parental generation: tripartite motif-containing 55 (Trim55), with mRNA downregulation in HHR (P < 0.05) and reduced protein expression. Trim55 mRNA levels were negatively correlated with LV mass in the F2 cross (r = -0.16, P = 0.025). In exon nine of Trim55 in HHR, we found one missense mutation that functionally alters protein structure. This mutation was strongly associated with Trim55 mRNA expression in F2 rats (F = 10.35, P < 0.0001). Similarly, in humans, we found reduced Trim55 expression in hearts of subjects with idiopathic dilated cardiomyopathy.

CONCLUSION: Our study suggests that the Trim55 gene, located in Cm22, is a novel candidate gene for polygenic LV hypertrophy independent of blood pressure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A salmon protein hydrolysate (SPH) was developed containing several angiotensin I-converting enzyme (ACE) inhibitory tripeptides the most abundant of which were Val-Leu-Trp, Val-Phe-Tyr, and Leu-Ala-Phe. Simulated digestion experiments showed that active constituents of SPH would survive in the digestive tract and be available for absorption into the bloodstream. In fact, ACE inhibitory activity was improved following simulated digestion suggesting that there were larger peptides in SPH that might contribute to bioactivity in vivo. A single oral dose (1,500 mg/kg body mass) of SPH significantly lowered blood pressure in spontaneously hypertensive rats (SHR). The treatment of SHR with either SPH fraction (<3,000 Da) or SPH fraction (>3,000 Da) reduced blood pressure. We conclude that the ability of SPH to lower blood pressure is due to a combination of ACE inhibitory tripeptides as identified, as well as additional unknown, peptide species that are generated during digestion of SPH in the gastrointestinal tract.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been consistently reported that vegetable oils including canola oil have a life shortening effect in Stroke-Prone Spontaneously Hypertensive Rats (SHRSP) and this toxic effect is not due to the fatty acid composition of the oil. Although it is possible that the phytosterol content or type of phytosterol present in vegetable oils may play some role in the life shortening effect observed in SHRSP rats this is still not completely resolved. Furthermore supercritical CO2 fractionation of canola oil with subsequent testing in SHRSP rats identified safe and toxic fractions however, the compounds responsible for life shortening effect were not characterised. The conventional approach to screen toxic substances in oils using rats takes more than six months and involves large number of animals. In this article we describe how rapid bioassay-guided screening could be used to identify toxic substances derived from vegetable oils and/or processed foods fortified with vegetable oils. The technique incorporates sequential fractionation of oils/processed foods and subsequent treatment of human cell lines that can be used in place of animal studies to determine cytotoxicity of the fractions with structural elucidation of compounds of interest determined via HPLC-MS and GC-MS. The rapid bioassay-guided screening proposed would require two weeks to test multiple fractions from oils, compared with six months if animal experiments were used to screen toxic effects. Fractionation of oil before bio-assay enhances the effectiveness of the detection of active compounds as fractionation increases the relative concentration of minor components.