27 resultados para Specific leaf area

em Deakin Research Online - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In anaerobic degradation of substrates containing mainly particulate organic matter, solids hydrolysis is rate-limiting. In these investigations, the particle size of various substrates was reduced by comminution to support hydrolysis. Two positive effects of comminution were observed. For substrates with high fibre content, which are particularly resistant to biodegradation, a significant improvement of the degradation degree was observed as a result of comminution. Secondly, for all substrates tested, and particularly for those rich in fibres, the degradation rate of comminuted samples was significantly higher. The first reason for both effects is an increase of the sample surface area. Several methods for measuring the specific surface area of organic materials, including particle size analysis, Nitrogen-adsorption and enzyme adsorption, were used and compared for the purpose of this study, where the surface area accessible to microbial enzymes is critical. The significance of the surface area in anaerobic degradation of particulate substrates was investigated through a kinetic model where the hydrolysis rate was based on the sample surface area. Good agreements were obtained between model and experiments carried out with samples of various specific surface areas. These results reinforced the significance of the sample surface area in anaerobic degradation processes. However, other effects of comminution responsible for the increased degradation degree and degradation rate were identified and discussed. These include: the increase of dissolved compounds due to cell rupture, exposition of surface areas previously inaccessible for microbial degradation, and alteration of the sample structure such as the lignin-cellulose arrangements.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigated the effects of flooding and drying over 6 months on growth and biomass allocation in seedlings of Muehlenbeckia florulenta Meisn. (tangled lignum), a common and widely distributed shrub of Australia's desert floodplains. We sought to determine if lignum seedlings respond to flooding or drying by altering traits or allocation patterns or instead display fixed patterns of development. Since desert floodplains are highly unpredictable and heterogeneous environments, we hypothesised that adaptive phenotypic plasticity is unlikely to have developed or be advantageous in seedlings of this species as environmental state changes are highly variable in their timing and duration and plants risk being caught out of kilter with environmental conditions. To test this, we conducted a glasshouse experiment in which lignum seedlings, grown in both clay and sandy sediments, were subjected to a range of hydrological conditions over a period of 6 months. Lignum seedlings exhibited considerable tolerance of both flooding and drying in our experiment and no mortality was observed. Growth was significantly reduced by flooding, however, and seedlings displayed extremely delayed development rather than plasticity in overall biomass allocation or any of the specific morphological variables we measured. Lignum seedlings were considerably more tolerant of drying than flooding and responded plastically by reducing leaf area ratios through reductions in specific leaf areas and leaf production and expansion. Sediment type had little effect on seedling development. Our results indicate that surface water hydrology is likely to be a major determinant of recruitment patterns in this ecologically significant species.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A new method to synthesize conducting oxide nanoparticles with low photocatalytic activity was investigated. Initially, the preparation of amorphous ZnO-SnO2 solid solution nanoparticles was studied using a sol-gel technique. It was found that X-ray amorphous nanopowders with low photocatalytic activity were produced when the precipitates were heat treated below 500 °C. However, FT-IR data showed that the sample may not be an oxide semiconductor. A mixture of ZnO and SnO2 crystalline nanoparticles was also produced at 800 °C and found to have much reduced photoactivity than commercial ZnO nanoparticles having a similar specific surface area.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The porous Ti02 pellets were prepared based on pigment grade titaina, P25 titania powder and titaniurn(lV) butoxide. The characterization was done with X-Ray diffraction, scanning electron microscopy and BET measurements. The result shows that Ti02 pellets by using titaniurn(IV) butoxide with some addictive have the best surface porosity, with specific surface area of 196.9m2/g. For pigment grade titania and P25 titania powder, it is still effective to enhance the surface area after reassembling. The surface area increased from 11.6 to 29.2 m2/g for pigment grade titania and from 50 to 84.4 m2/g for P25 titania powder. Furthermore, it has been investigated on how to optimize and get the highest surface area by controlling the sintering temperature, reaction temperature, pH of solution, and the amount of alcohol and addictive of surfactant during preparation. The experimental photocatalytic degradation of acetone and toluene was performed using titania pellets made from P25 titania powder.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Volatile organic compounds (VOCs) exist widely in both the indoor and outdoor environment. The main contributing sources of VOCs are motor vehicle exhaust and solvent utilization. Some VOCs are toxic and carcinogenic to human health, such as benzene. In this study, TiO2–SiO2 based photocatalysts were synthesized using the sol–gel method, with high surface areas of 274.1–421.1 m2/g obtained. Two types of pellets were used as catalysts in a fixed-bed reactor installed with a UV black light lamp. Experiments were conducted to compare their efficiencies in degrading the VOCs. Toluene was used as the VOC indicator. When the toluene laden gas stream passed through the photocatalytic reactor, the removal efficiencies were determined using a FTIR multi-gas analyser, which was connected to the outlet of the reactor to analyse the toluene concentrations. As the TiO2–SiO2 pellets used have a high adsorption capacity, they had dual functions as a photocatalyst and adsorbent in the hybrid photocatalysis and adsorption system. The experiments demonstrated that the porous photocatalyst with very high adsorptive capacity enhanced the subsequent photocatalysis reactions and lead to a positive synergistic effect. The catalyst can be self-regenerated by photocatalytic oxidation of the adsorbed VOCs. When the UV irradiation and feeding gas is continuous, a destruction efficiency of about 25% was achieved over a period of 20 h. Once the system was designed and operated into adsorption/regeneration mode, a higher removal efficiency of about 55% was maintained. It was found that the catalyst pellets with a higher surface area (421 m2/g) achieved higher conversion efficiency (100%) for a longer period than those with a lower surface area. A full spectrum scan was carried out using a Bio-rad Infrared spectrometer, finding that the main components of the treated gas stream leaving the reactor, along with untreated toluene, were CO2 and water. The suspected intermediates of aliphatic hydrocarbons and CO were found in minimal amounts or were non detectable. The kinetic rate constants were calculated from the experimental results, it appeared that the stronger adsorption capacity, i.e. larger specific surface area, the higher conversion efficiency would be achieved.


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The widespread land use changes that are expected to occur across the Corangamite region in southwest Victoria, Australia, have the potential to significantly alter the water balance of catchments. Adoption of the Soil and Water Assessment Tool (SWAT), which is a long-term water balance model, as a tool for predicting land use change impacts on catchment water balance for the Corangamite region is currently being considered. This paper describes the initial application of SWAT to the Woady Yaloak River catchment, located within the Corangamite region, to carry out an evaluation of its abilities for simulating the long-term water balance dynamics of the catchment. The performance of the model for predicting runoff at annual and monthly time scales was found to be very good. The excessive recharge of the shallow aquifer that occurred during winter, despite the subsoil being relatively impermeable, ultimately contributed to overestimation of baseflow and underestimation of interflow. The actual evapotranspiration from hydrologic response units (HRU s) containing eucalyptus trees was significantly less than that from HRUs containing pasture, a problem attributed to the incorrect simulation of Leaf Area Index (LAI) and biomass by the model for mature stands of eucalyptus trees and also to assigning inadequate values for two parameters that directly influence evapotranspiration. SWAT has very good potential for being used as tool to study land use change impacts across the Corangamite region provided that several modifications are made to the model to overcome some of the shortcomings and deficiencies that were identified in this initial application.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

SWAT cannot accurately simulate the seasonal fluctuations or the long-term trend of the Leaf Area Index (LAI) of evergreen forests. This deficiency has detrimental impacts for the prediction of interception and transpiration, two processes that have a significant influence on catchment water yield. This paper details the integration of the forest growth model 3-PG with SWAT to improve the simulation of LAI for evergreen forests. The integrated model, called SWAT/3-PG, was applied to the Woady Yaloak River Catchment in southern Australia where eucalyptus forests and pine plantations account for 30% of the total land use. SWAT/3-PG simulated the LAI of eucalypts and pines more accurately and realistically than the original version of SWAT. Forest LAI simulated by SWAT/3-PG agreed reasonably well with estimates of forest LAI derived independently from a Landsat satellite image. SWAT/3- PG has considerable value as a tool that managers can utilise to predict the impacts of land use change in catchments where evergreen forests are prevalent.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study, a three-stage process consisting of mechanical milling, heat treatment, and washing has been used to manufacture nanoparticulate ZnO powders with a controlled particle size and minimal agglomeration. By varying the temperature of the post-milling heat treatment, it was possible to control the average particle size over the range of 28–57 nm. The photocatalytic activity of these powders was characterized by measuring the hydroxyl radical concentration as a function of irradiation time using the spin-trapping technique with electron paramagnetic resonance spectroscopy. It was found that there exists an optimum particle size of approximately 33 nm for which the photocatalytic activity is maximized. The existence of this optimal particle size is attributable to an increase in the charge carrier recombination rate, which counteracts the increased activity arising from the higher specific surface area for a sufficiently small particle size.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mechanochemical processing of anhydrous chloride precursors with Na2CO3 has been investigated as a means of manufacturing nanocrystalline SnO2 doped ZnO photocatalysts. High-energy milling and heat-treatment of a 0.1SnCl2+0.9ZnCl2+Na2CO3+4NaCl reactant mixture was found to result in the formation of a composite powder consisting of oxide grains embedded within a matrix of NaCl. Subsequent washing with deionized water resulted in removal of the NaCl matrix phase and partial hydration of the oxide reaction product with the consequent formation of ZnSn(OH)6. The extent of this hydration reaction was found to decrease in a linear fashion with the temperature of the post-milling heat-treatment over the range of 400–700 °C. For a heat-treatment temperature of 700 °C, the SnO2 doped ZnO powder was found to exhibit significantly higher photocatalytic activity than either single-phase SnO2 or ZnO powders that were synthesized using similar processing conditions. The heightened photocatalytic activity of the SnO2 doped ZnO was attributed to its higher specific surface area and the enhanced charge separation arising from the coupling of ZnO with SnO2.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Carbon nanotubes (CNTs) are nanoscale cylinders of graphene with exceptional properties such as high mechanical strength, high aspect ratio and large specific surface area. To exploit these properties for membranes, macroscopic structures need to be designed with controlled porosity and pore size. This manuscript reviews recent progress on two such structures: (i) CNT Bucky-papers, a non-woven, paper like structure of randomly entangled CNTs, and (ii) isoporous CNT membranes, where the hollow CNT interior acts as a membrane pore. The construction of these two types of membranes will be discussed, characterization and permeance results compared, and some promising applications presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In Australia and New Zealand, the term 'special library' refers to libraries that provide resources and services to employees of an organization or industry.  The majority have collections and/or services supporting a specific subject area.  These include, but are not limited to, libraries in government department, law firms, private companies, banking and finance institutions, research organizations, religious groups and professional associations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the rapid development of nanoscience and nanotechnology over the last two decades, great progress has been made not only in preparation and characterization of nanomaterials, but also in their functional applications. As an important one-dimensional nanomaterial, nanofibers have extremely high specific surface area because of their small diameters, and nanofiber membranes are highly porous with excellent pore interconnectivity. These unique characteristics plus the functionalities from the polymers themselves impart nanofibers with many desirable properties for advanced applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the rapid development of nanoscience and nanotechnology over the last decades, great progress has been made not only in the preparation and characterization of nanomaterials, but also in their functional applications. As an important one-dimensional nanomaterial, nanofibers have extremely high specific surface area because of their small diameters, and nanofiber membranes are highly porous with excellent pore interconnectivity. These unique characteristics plus the functionalities from the materials themselves impart nanofibers with a number of novel properties for applications in areas as various as biomedical engineering, wound healing, drug delivery and release control, catalyst and enzyme carriers, filtration, environment protection, composite reinforcement, sensors, optics, energy harvest and storage , and many others. More and more emphasis has recently been placed on large-scale nanofiber production, the key technology to the wide usages of nanofibers in practice. Tremendous efforts have been made on producing nanofibers from special materials. Concerns have been raised to the safety issue of nanofibrous materials. This book is a compilation of contributions made by experts who specialize in their chosen field. It is grouped into three sections composed of twenty-one chapters, providing an up-to-date coverage of nanofiber preparation, properties and functional applications. I am deeply appreciative of all the authors and have no doubt that their contribution will be a useful resource of anyone associated with the discipline of nanofibers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Superhydrophobic electrospun polyacrylonitrile nanofibre membranes have been prepared by surface coating of silica nanoparticles and fluorinated alkyl silane. The coated membranes were characterised by scanning electron microscopy, water contact angle, thermogravimetry analysis, Brunauer–Emmett–Teller, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and atomic force microscopy. It was shown that the loading of nanoparticle on the nanofibre membrane was controlled by the particle concentration in the coating solution, which played a critical role in the formation of superhydrophobic surface. Increased particle loading led to higher surface roughness and WCA. The nanoparticle coating had little influence on the porosity of the nanofibre membranes. However, overloading of the particles would affect the specific surface area of the nanofibre membrane.