26 resultados para Species Interactions

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

* 1
Much recent research has focused on the use of species distribution models to explore the influence(s) of environment (predominantly climate) on species’ distributions. A weakness of this approach is that it typically does not consider effects of biotic interactions, including competition, on species’ distributions.
* 2
Here we identify and quantify the contribution of environmental factors relative to biotic factors (interspecific competition) to the distribution and abundance of three large, wide-ranging herbivores, the antilopine wallaroo (Macropus antilopinus), common wallaroo (Macropus robustus) and eastern grey kangaroo (Macropus giganteus), across an extensive zone of sympatry in tropical northern Australia.
* 3
To assess the importance of competition relative to habitat features, we constructed models of abundance for each species incorporating habitat only and habitat + the abundance of the other species, and compared their respective likelihoods using Akaike's information criterion. We further assessed the importance of variables predicting abundance across models for each species.
* 4
The best-supported models of antilopine wallaroo and eastern grey kangaroo abundance included both habitat and the abundance of the other species, providing evidence of interspecific competition. Contrastingly, models of common wallaroo abundance were largely influenced by climate and not the abundance of other species. The abundance of antilopine wallaroos was most influenced by water availability, eastern grey kangaroo abundance and the frequency of late season fires. The abundance of eastern grey kangaroos was most influenced by aspects of climate, antilopine wallaroo abundance and a measure of cattle abundance.
* 5
Our study demonstrates that where census and habitat data are available, it is possible to reveal speciesinteractions (and measure their relative strength and direction) between large, mobile and/or widely-distributed species for which competition is difficult to demonstrate experimentally. This allows discrimination of the influences of environmental factors and species interactions on species’ distributions, and should therefore improve the predictive power of species distribution models.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Apex predators perform important functions that regulate ecosystems worldwide. However, little is known about how ecosystem regulation by predators is influenced by human activities. In particular, how important are top-down effects of predators relative to direct and indirect human-mediated bottom-up and top-down processes? Combining data on species' occurrence from camera traps and hunting records, we aimed to quantify the relative effects of top-down and bottom-up processes in shaping predator and prey distributions in a human-dominated landscape in Transylvania, Romania. By global standards this system is diverse, including apex predators (brown bear and wolf), mesopredators (red fox) and large herbivores (roe and red deer). Humans and free-ranging dogs represent additional predators in the system. Using structural equation modelling, we found that apex predators suppress lower trophic levels, especially herbivores. However, direct and indirect top-down effects of humans affected the ecosystem more strongly, influencing species at all trophic levels. Our study highlights the need to explicitly embed humans and their influences within trophic cascade theory. This will greatly expand our understanding of species interactions in human-modified landscapes, which compose the majority of the Earth's terrestrial surface.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Invasive species have reshaped the composition of biomes across the globe, and considerable cost is now associated with minimising their ecological, social and economic impacts. Mammalian predators are among the most damaging invaders, having caused numerous species extinctions. Here, we review evidence of interactions between invasive predators and six key threats that together have strong potential to influence both the impacts of the predators, and their management. We show that impacts of invasive predators can be classified as either functional or numerical, and that they interact with other threats through both habitat- and community-mediated pathways. Ecosystem context and invasive predator identity are central in shaping variability in these relationships and their outcomes. Greater recognition of the ecological complexities between major processes that threaten biodiversity, including changing spatial and temporal relationships among species, is required to both advance ecological theory and improve conservation actions and outcomes. We discuss how novel approaches to conservation management can be used to address interactions between threatening processes and ameliorate invasive predator impacts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

All of the plants and animals that make up freshwater aquatic communities are affected by salinity. Many taxa possess morphological, physiological and life-history characteristics that provide some capacity for tolerance, acclimatisation or avoidance. These characteristics impart a level of resilience to freshwater communities.     To maintain biodiversity in aquatic systems it is important to manage the rate, timing, pattern, frequency and duration of increases in salinity in terms of lethal and sublethal effects, sensitive life stages, the capacity of freshwater biota to acclimatise to salinity and long-term impacts on community structure.     We have limited understanding of the impacts of saline water management on species interactions, food-web structures and how elevated salinity levels affect the integrity of communities. Little is known about the effect of salinity on complex ecosystem processes involving microbes and microalgae, or the salinity thresholds that prevent semi-aquatic and terrestrial species from using aquatic resources. Compounding effects of salinity and other stressors are also poorly understood.    Our current understanding needs to be reinterpreted in a form that is accessible and useful for water managers. Because of their complexity, many of the remaining knowledge gaps can only be addressed through a multidisciplinary approach carried out in an adaptive management framework, utilising decision-making and ecological risk assessment tools.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Relatively little is known about the biology and ecology of the world’s largest (heaviest) bony fish, the ocean sunfish Mola mola, despite its worldwide occurrence in temperate and tropical seas. Studies are now emerging that require many common perceptions about sunfish behaviour and ecology to be re-examined. Indeed, the long-held view that ocean sunfish are an inactive, passively drifting species seems to be entirely misplaced. Technological advances in marine telemetry are revealing distinct behavioural patterns and protracted seasonal movements. Extensive forays by ocean sunfish into the deep ocean have been documented and broad-scale surveys, together with molecular and laboratory based techniques, are addressing the connectivity and trophic role of these animals. These emerging molecular and movement studies suggest that local distinct populations may be prone to depletion through bycatch in commercial fisheries. Rising interest in ocean sunfish, highlighted by the increase in recent publications, warrants a thorough review of the biology and ecology of this species. Here we review the taxonomy, morphology, geography, diet, locomotion, vision, movements, foraging ecology, reproduction and species interactions of M. mola. We present a summary of current conservation issues and suggest methods for addressing fundamental gaps in our knowledge.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Glucocorticoid hormone profiles are increasingly used as physiological markers to infer the strength of species interactions that can influence fitness and ensuing population dynamics of animals. Here we investigated two aims. First, we measured the effect of a 90-min capture stress protocol on the plasma corticosterone responses of a large native Australian lizard, the lace monitor (Varanus varius). Second, we compared the basal and postcapture stress corticosterone responses of lace monitors in habitats where they were exposed to high or low densities of the European red fox (Vulpes vulpes), an introduced competitor. Lace monitors responded to the capture stress protocol by significantly increasing plasma levels of corticosterone above basal at 45- and 90-min-postcapture blood-sampling intervals. In habitats with high fox densities, lace monitors produced a significantly greater basal and capture-stress-induced corticosterone response compared to individuals in low-fox density habitat. A significant interaction among fox density, time postcapture, and body condition was also found to influence plasma corticosterone values. These results suggest competition with red fox, perhaps via nutritional stress and increased hypersensitivity of the adrenocortical axis in lizards. At present, without further research, we do not understand whether such responses mediate lizard fitness or whether they have adaptive or maladaptive consequences for lizard populations in response to red fox competition. Nevertheless, our results help broaden understanding of the physiological implications arising from species interactions and specifically how introduced competitors could mediate diverse impacts on native biodiversity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Understanding the mechanisms that afford invasive species their ecological success as important agents of global change is key to addressing their biodiversity impacts. Species invasions that occur on small islands are especially detrimental and suggest that invaders intensify their ecological impacts by exploiting novel ecological functions. However, it remains unknown whether such strong impacts are also a consequence of an invader's indirect effect (e.g. causing physiological stress or reproductive failure) on island species. Therefore, it is valuable to quantify the physiological mechanisms through which invasive species can exert indirect effects on the performance, and ultimately the fitness of island endemics. In this study, we investigated whether the invasive cane toad (Rhinella marina) caused indirect competitive impacts on the endemic Fijian ground frog (Platymantis vitiana) on the small (60 ha) Viwa Island, Fiji. We used large (4 × 10 000 m2), natural and replicated enclosures to monitor ground frog stress hormone levels, reproductive hormone cycle, body condition, breeding and survival in the presence/absence of the cane toad. We conducted monthly sampling to analyse annual patterns in testosterone for males, estradiol and progesterone for females, corticosterone for both sexes and body condition of ground frogs in replicated enclosures or natural habitats with high/low cane toad densities. We also measured survival and reproductive success of ground frogs in enclosures. Results showed that in both enclosures and natural habitats with high cane toad densities, ground frogs had a significant reduction in body condition, increased urinary corticosterone metabolites and suppressed sex steroid metabolites. Most importantly, annual field surveys showed significant reduction in ground frog reproductive success (fewer eggs were laid in enclosures with toads present); however, survival was not severely reduced. Our study clearly demonstrated that on small islands, invasive species may exploit broader ecological roles with strong indirect effects that amplify their impacts beyond those seen on continents. Overall, the effects of cane toad competition had the capacity to strongly reduce ground frog reproductive success. We strongly advocate management actions that either minimize invasion or limit the strength of invasive-native species interactions (e.g. through habitat conservation) to prevent further extinctions on islands.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biological invasions are acknowledged among the main drivers of global changes in biodiversity. Despite compelling evidence of species interactions being strongly regulated by environmental conditions, there is a dearth of studies investi-gating how the effects of non-native species vary among areas exposed to different anthropogenic pressures. Focusing on marine macroalgae, we performed a meta-analysis to test whether and how the direction and magnitude of their effects on resident communities and species varies in relation to cumulative anthropogenic impact levels. The relationship between human impact levels and non-native species impact intensity emerged only for a reduced subset of the response variables examined. Yet, there was a trend for the effects of non-native species on community biomass and abundance and on species abundance to become less negative at heavily impacted sites. By contrast, the magnitude of negative effects of seaweed on community evenness tended to increase with human impact levels. The hypothesis of decreasing severity of invader’ impacts along a gradient of habitat degradation was also tested experimentally at a regional scale by comparing the effects of the removal of non-native alga,
Caulerpa cylindracea, on resident assemblages among rocky reefs exposed to different anthropogenic pressures. Assemblages at urban and pristine site did not differ when invaded, but did so when C. cylindracea was removed. Our results suggest that, despite the generally weak relationship between human impacts levels and non-native species impacts, more negative impacts can be expected in less stressful environments (i.e. less degraded or pristine sites), where competitive interactions are presumably the driving force structuring resident communities. Implementing strategies for controlling the establishment of non-native seaweeds should be, thus, considered a priority for preserving biodiversity in relatively pristine areas. On the other hand, control of invaders at degraded sites could be warranted to lessen their role as propagule sources

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Few models are in place for analysis of extreme lactation patterns such as that of the fur seals which are capable of extended down regulation of milk production in the absence of involution. During a 10–12 month lactation period, female fur seals suckle pups on shore for 2–3 days, and then undertake long foraging trips at sea for up to 28 days, resulting in the longest intersuckling bouts recorded. During this time the mammary gland down regulates milk production. We have induced Cape fur seal (Arctocephalus pusillus pusillus) mammary cells in vitro to form mammospheres up to 900 μm in diameter, larger than any of their mammalian counterparts. Mammosphere lumens were shown to form via apoptosis and cells comprising the cellular boundary stained vimentin positive. The Cape fur seal GAPDH gene was cloned and used in RT-PCR as a normalization tool to examine comparative expression of milk protein genes (αS2-casein, β-lactoglobulin and lysozyme C) which were prolactin responsive. Cape fur seal mammary cells were found to be unique; they did not require Matrigel for rapid mammosphere formation and instead deposited their own matrix within 2 days of culture. When grown on Matrigel, cells exhibited branching/stellate morphogenesis highlighting the species-specific nature of cell–matrix interactions during morphological differentiation. Matrix produced in vitro by cells did not support formation of human breast cancer cell line, PMC42 mammospheres. This novel model system will help define the molecular pathways controlling the regulation of milk protein expression and species specific requirements of the extracellular matrix in the cape fur seal.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polymorphism describes two or more distinct, genetically determined, phenotypes that co-occur in the same population, where the rarest morph is maintained at a frequency above the mutation rate (Ford 1945; Huxley 1955). In a recent opinion piece, we explored a new idea regarding the role of genetic architectures and morph interactions in colour polymorphisms and how this can negatively affect population performance (Bolton et al. 2015). In this issue of Molecular Ecology, Forsman (2016) thoroughly discusses the current evidence for polymorphisms enhancing population performance and critiques the validity of the definitions of polymorphism we use in our original paper. We respond by clarifying that the negative consequences of polymorphisms that we discussed are likely to be most pertinent in species that have a particular set of characteristics, such as strong sexual or social interactions between morphs and discrete genetic architectures. Although it was not our intention to redefine polymorphism, we do believe that there should be further discussion about refining or characterizing balanced polymorphisms with respect to the degree of morph sympatry, discreteness of traits and their underlying genetic architecture, and the types of selection that drive and maintain the variation. The latter describes whether polymorphism is primarily maintained by external factors such as predation pressure or internal factors such as interactions with members of the same species. The contribution of Forsman (2016) is useful to this discussion, and we hope that our exchange of opinions will inspire new empirical and theoretical ideas on the origin and maintenance of colour polymorphisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The marron, Cherax tenuimanus (Smith), is one of the most easily recognisable members of the freshwater crayfish genus Cherax. Since its description in 1912, the taxonomy of the species has not been in dispute, but recent genetic studies have demonstrated that the species is not homogenous and consists of two genetically distinct forms. One of these forms is widespread and exploited via aquaculture and the other is restricted to a single river system, the Margaret River. This paper presents allozyme data, collected over a 19-year period, which documents the introduction of the widespread form into the Margaret River and the subsequent reproductive interactions between the two forms. These data indicate minimal interbreeding between the two forms of marron and so justify their recognition as distinct species. As the original description of the marron was based on specimens collected from the Margaret River, the form native to this river retains the name C. tenuimanus and a new species, Cherax cainii Austin is described for the common, widespread form of marron. An additional outcome of this study is that C. tenuimanus has been rapidly displaced by the introduced C. cainii within the Margaret River. Consequently, urgent conservation measures are required to protect C. tenuimanus and prevent its possible extinction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Competitive interactions between Galaxias maculatus, native to southeastern Australia, and Gambusia holbrooki, an exotic pest, were examined in relation to two types of artificial cover and a food source. Experiments were performed in an 800 l tank using photographic techniques. The relative distance of G. maculatus from cover or food source before and after the introduction of G. holbrooki were compared. Also, the proportions of the species were altered to examine the effects of unequal numbers on dominance behaviour. It was found that G. holbrooki was unable to out compete G. maculatus for either cover or food. The distance of G. maculatus from a food source was seen to increase following the introduction of G. holbrooki, when they outnumbered G. maculatus by 3 to 1. Although the distance from the food of G.maculatus increased following the introduction of G. holbrooki, in all cases the mean distance of G.␣maculatus from cover or food was less than that of G. holbrooki. Significant intra-species competition appeared to occur between G. maculatus and it may be that this competition had a greater effect than the competitive pressure G. holbrooki was able to place on the natives. This study revealed that the exotic pest species, G. holbrooki, could not out compete a small native Australian fish species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanocomposite electrolytes of a fully amorphous trifunctional polyether (3PEG) and poly- (methylene ethylene oxide) (PMEO) have been complexed with two lithium salts and nanoparticulate (~20 nm) fillers of TiO2 and Al2O3. Addition of the fillers to the polymer salt complexes shows a significant change in the conformational modes of both polymers, especially the D-LAM region between 200 and 400 cm-1, indicating a reduced segmental flexibility of the chain. These changes are more pronounced with the use of TiO2 than Al2O3. Incorporation of the nanoparticulate fillers to the electrolytes fails to influence the degree of ion association, suggesting that the number of charge carriers available for conduction in both polymers using both LiClO4 and LiCF3SO3 is not the source of any conductivity increase. Addition of the fillers, which was seen to increase the conductivity in PEO-based systems, generally lowers the conductivity in the present PMEO systems, while the addition of TiO2 has little or no effect except in the cases of 3PEG 1.5 and 1.25 mol/kg LiClO4. In this case, 10 wt % TiO2 provides a conductivity increase of half an order of magnitude at approximately 60 °C. We also report for the first time a Raman spectroscopy investigation into the PEO-based nanocomposite electrolytes. The present results are discussed in terms of the electrostatic interactions involving dielectric properties of the fillers, of special interest being the interactions between the polymer and the fillers and between the ionic species and the fillers, when the effect of crystallization can be ignored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Compared to terrestrial environments, grazing intensity on belowground plant parts may be particularly strong in aquatic environments, which may have great effects on plant-community structure. We observed that the submerged macrophyte, Potamogeton pectinatus, which mainly reproduces with tubers, often grows at intermediate water depth and that P. perfoliatus, which mainly reproduces with rhizomes and turions, grows in either shallow or deep water. One mechanism behind this distributional pattern may be that swans prefer to feed on P. pectinatus tubers at intermediate water depths. We hypothesised that when swans feed on tubers in the sediment, P. perfoliatus rhizomes and turions may be damaged by the uprooting, whereas the small round tubers of P. pectinatus that escaped herbivory may be more tolerant to this bioturbation. In spring 2000, we transplanted P. perfoliatus rhizomes into a P. pectinatus stand and followed growth in plots protected and unprotected, respectively, from bird foraging. Although swan foraging reduced tuber biomass in unprotected plots, leading to lower P. pectinatus density in spring 2001, this species grew well both in protected and unprotected plots later that summer. In contrast, swan grazing had a dramatic negative effect on P. perfoliatus that persisted throughout the summer of 2001, with close to no plants in the unprotected plots and high densities in the protected plots. Our results demonstrate that herbivorous waterbirds may play a crucial role in the distribution and prevalence of specific plant species. Furthermore, since their grazing benefitted their preferred food source, the interaction between swans and P. pectinatus may be classified as ecologically mutualistic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Individual variations in the use of the species niche are an important component of diversity in trophic interactions. A challenge in testing consistency of individual foraging strategy is the repeated collection of information on the same individuals.

Methodology/Principal Findings: The foraging strategies of sympatric fur seals (Arctocephalus gazella and A. tropicalis) were examined using the stable isotope signature of serially sampled whiskers. Most whiskers exhibited synchronous delta C-13 and delta N-15 oscillations that correspond to the seal annual movements over the long term (up to 8 years). delta C-13 and delta N-15 values were spread over large ranges, with differences between species, sexes and individuals. The main segregating mechanism operates at the spatial scale. Most seals favored foraging in subantarctic waters (where the Crozet Islands are located) where they fed on myctophids. However, A. gazella dispersed in the Antarctic Zone and A. tropicalis more in the subtropics. Gender differences in annual time budget shape the seal movements. Males that do not perform any parental care exhibited large isotopic oscillations reflecting broad annual migrations, while isotopic values of females confined to a limited foraging range during lactation exhibited smaller changes. Limited inter-individual isotopic variations occurred in female seals and in male A. tropicalis. In contrast, male A. gazella showed large inter-individual variations, with some males migrating repeatedly to high-Antarctic waters where they fed on krill, thus meaning that individual specialization occurred over years.

Conclusions/Significance: Whisker isotopic signature yields unique long-term information on individual behaviour that integrates the spatial, trophic and temporal dimensions of the ecological niche. The method allows depicting the entire realized niche of the species, including some of its less well-known components such as age-, sex-, individual- and migration-related changes. It highlights intrapopulation heterogeneity in foraging strategies that could have important implications for likely demographic responses to environmental variability.