7 resultados para Spatial Empirical bayes Smoothing

em Deakin Research Online - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aggregation operators model various operations on fuzzy sets, such as conjunction, disjunction and averaging. Recently double aggregation operators have been introduced; they model multistep aggregation process. The choice of aggregation operators depends on the particular problem, and can be done by fitting the operator to empirical data. We examine fitting general aggregation operators by using a new method of monotone Lipschitz smoothing. We study various boundary conditions and constraints which determine specific types of aggregation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major challenge facing freshwater ecologists and managers is the development of models that link stream ecological condition to catchment scale effects, such as land use. Previous attempts to make such models have followed two general approaches. The bottom-up approach employs mechanistic models, which can quickly become too complex to be useful. The top-down approach employs empirical models derived from large data sets, and has often suffered from large amounts of unexplained variation in stream condition.

We believe that the lack of success of both modelling approaches may be at least partly explained by scientists considering too wide a breadth of catchment type. Thus, we believe that by stratifying large sets of catchments into groups of similar types prior to modelling, both types of models may be improved. This paper describes preliminary work using a Bayesian classification software package, ‘Autoclass’ (Cheeseman and Stutz 1996) to create classes of catchments within the Murray Darling Basin based on physiographic data.

Autoclass uses a model-based classification method that employs finite mixture modelling and trades off model fit versus complexity, leading to a parsimonious solution. The software provides information on the posterior probability that the classification is ‘correct’ and also probabilities for alternative classifications. The importance of each attribute in defining the individual classes is calculated and presented, assisting description of the classes. Each case is ‘assigned’ to a class based on membership probability, but the probability of membership of other classes is also provided. This feature deals very well with cases that do not fit neatly into a larger class. Lastly, Autoclass requires the user to specify the measurement error of continuous variables.

Catchments were derived from the Australian digital elevation model. Physiographic data werederived from national spatial data sets. There was very little information on measurement errors for the spatial data, and so a conservative error of 5% of data range was adopted for all continuous attributes. The incorporation of uncertainty into spatial data sets remains a research challenge.

The results of the classification were very encouraging. The software found nine classes of catchments in the Murray Darling Basin. The classes grouped together geographically, and followed altitude and latitude gradients, despite the fact that these variables were not included in the classification. Descriptions of the classes reveal very different physiographic environments, ranging from dry and flat catchments (i.e. lowlands), through to wet and hilly catchments (i.e. mountainous areas). Rainfall and slope were two important discriminators between classes. These two attributes, in particular, will affect the ways in which the stream interacts with the catchment, and can thus be expected to modify the effects of land use change on ecological condition. Thus, realistic models of the effects of land use change on streams would differ between the different types of catchments, and sound management practices will differ.

A small number of catchments were assigned to their primary class with relatively low probability. These catchments lie on the boundaries of groups of catchments, with the second most likely class being an adjacent group. The locations of these ‘uncertain’ catchments show that the Bayesian classification dealt well with cases that do not fit neatly into larger classes.

Although the results are intuitive, we cannot yet assess whether the classifications described in this paper would assist the modelling of catchment scale effects on stream ecological condition. It is most likely that catchment classification and modelling will be an iterative process, where the needs of the model are used to guide classification, and the results of classifications used to suggest further refinements to models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Linkages among different construction markets have attracted great of attention from the construction economist. With notable exceptions, most of this infestation has carried out by using input-output analysis. Interactions among regional construction markets have been discussed in few studies and none of them investigate spatial effects on the regional construction markets. This study employed spatial econometric techniques, spatial autocorrelation and convergence tests, to analysis interactions and linkages among construction price indices in Australian six states and two territories. The empirical results indicate the presence of significant positive spatial correlation between the construction prices in Australian eight construction markets and the degree of dependence decrease sufficiently quickly as the space between units increase. The results of convergence test further present evidence on "ripple effect" in the construction prices in Australian regional markets and the changes in regional construction price would positively influence neighboring states first, and then spread out into others, and then the regional prices converge and reach a long-run equilibrium in the following quarters. Urban development policymakers and construction developers could benefit from the analysis of spatial linkages in regional construction markets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To be diagnostically effective, structural magnetic resonance imaging (sMRI) must reliably distinguish a depressed individual from a healthy individual at individual scans level. One of the tasks in the automated diagnosis of depression from brain sMRI is the classification. It determines the class to which a sample belongs (i.e., depressed/not depressed, remitted/not-remitted depression) based on the values of its features. Thus far, very limited works have been reported for identification of a suitable classification algorithm for depression detection. In this paper, different types of classification algorithms are compared for effective diagnosis of depression. Ten independent classification schemas are applied and a comparative study is carried out. The algorithms are: Naïve Bayes, Support Vector Machines (SVM) with Radial Basis Function (RBF), SVM Sigmoid, J48, Random Forest, Random Tree, Voting Feature Intervals (VFI), LogitBoost, Simple KMeans Classification Via Clustering (KMeans) and Classification Via Clustering Expectation Minimization (EM) respectively. The performances of the algorithms are determined through a set of experiments on sMRI brain scans. An experimental procedure is developed to measure the performance of the tested algorithms. A classification accuracy evaluation method was employed for evaluation and comparison of the performance of the examined classifiers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The linkages among different construction markets have recently attracted much attention from construction economists. The interactions among regional construction markets have been discussed in a few studies, most of which have been carried out by using input-output methods, and none of them investigated spatial effects on the regional construction markets. This study employed spatial econometric techniques, including spatial autocorrelation and convergence tests, to analyse interactions and linkages among construction price indices in Australian six states and two territories. The empirical results indicate the presence of significant positive spatial correlation among the construction prices in Australian eight construction markets and the degree of dependence decreasing sufficiently quickly as the space between regions increases. The results of convergence test further provide evidence of existence of a ripple effect in construction prices among the Australian regional markets and the changes in construction prices in a state would first positively influence neighbouring states, and then spread out into other non-neighbouring states or territories.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate and timely traffic flow prediction is crucial to proactive traffic management and control in data-driven intelligent transportation systems (D2ITS), which has attracted great research interest in the last few years. In this paper, we propose a Spatial-Temporal Weighted K-Nearest Neighbor model, named STW-KNN, in a general MapReduce framework of distributed modeling on a Hadoop platform, to enhance the accuracy and efficiency of short-term traffic flow forecasting. More specifically, STW-KNN considers the spatial-temporal correlation and weight of traffic flow with trend adjustment features, to optimize the search mechanisms containing state vector, proximity measure, prediction function, and K selection. urthermore, STW-KNN is implemented on a widely adopted Hadoop distributed computing platform with the MapReduce parallel processing paradigm, for parallel prediction of traffic flow in real time. inally, with extensive experiments on real-world big taxi trajectory data, STW-KNN is compared with the state-of-the-art prediction models including conventional K-Nearest Neighbor (KNN), Artificial Neural Networks (ANNs), Naïve Bayes (NB), Random orest (R), and C4.. The results demonstrate that the proposed model is superior to existing models on accuracy by decreasing the mean absolute percentage error (MAPE) value more than 11.9% only in time domain and even achieves 89.71% accuracy improvement with the MAPEs of between 4% and 6.% in both space and time domains, and also significantly improves the efficiency and scalability of short-term traffic flow forecasting over existing approaches.