29 resultados para Somatic mutation

em Deakin Research Online - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The human immune system provides inspiration for solving a wide range of innovative problems. In this paper, we propse an immune network based approach for web document clustering. All the immune cells in the network competitively recognize the antigens (web documents) which are presented to the network one by one. The interaction between immune cells and an antigen leads to an augment of the network through the clonal selection and somatic mutation of the stimulated immune cells, while the interaction among immune cells results in a network compression. The structure of the immune network is well maintained by learning and self-regularity. We use a public web document data set to test the effectiveness of our method and compare it with other approaches. The experimental results demonstrate that the most striking advantage of immune-based data clustering is its adaptation in dynamic environment and the capability of finding new clusters automatically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wilson disease is an autosomal recessive copper transport disorder resulting from defective biliary excretion of copper and subsequent hepatic copper accumulation and liver failure if not treated. The disease is caused by mutations in the ATP7B (WND) gene, which is expressed predominantly in the liver and encodes a copper-transporting P-type ATPase that is structurally and functionally similar to the Menkes protein (MNK), which is defective in the X-linked copper transport disorder Menkes disease. The toxic milk (tx) mouse has a clinical phenotype similar to Wilson disease patients and, recently, the tx mutation within the murine WND homologue (Wnd) of this mouse was identified, establishing it as an animal model for Wilson disease. In this study, cDNA constructs encoding the wild-type (Wnd-wt) and mutant (Wnd-tx) Wilson proteins (Wnd) were generated and expressed in Chinese hamster ovary (CHO) cells. The tx mutation disrupted the copper-induced relocalization of Wnd in CHO cells and abrogated Wnd-mediated copper resistance of transfected CHO cells. In addition, co-localization experiments demonstrated that while Wnd and MNK are located in the trans-Golgi network in basal copper conditions, with elevated copper, these proteins are sorted to different destinations within the same cell. Ultrastructural studies showed that with elevated copper levels, Wnd accumulated in large multi-vesicular structures resembling late endosomes that may represent a novel compartment for copper transport. The data presented provide further support for a relationship between copper transport activity and the copper-induced relocalization response of mammalian copper ATPases, and an explanation at a molecular level for the observed phenotype of tx mice

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The somatic JAK2 valine-to-phenylalanine (V617F) mutation has been detected in up to 90% of patients with polycythemia and in a sizeable proportion of patients with other myeloproliferative disorders such as essential thrombocythemia and idiopathic myelofibrosis. Suppressor of cytokine signaling 3 (SOCS3) is known to be a strong negative regulator of erythropoietin (EPO) signaling through interaction with both the EPO receptor (EPOR) and JAK2. We report here that JAK2 V617F cannot be regulated and that its activation is actually potentiated in the presence of SOCS3. Instead of acting as a suppressor, SOCS3 enhanced the proliferation of cells expressing both JAK2 V617F and EPOR. Additionally, although SOCS1 and SOCS2 are degraded in the presence of JAK2 V617F, turnover of SOCS3 is inhibited by the JAK2 mutant kinase and this correlated with marked tyrosine phosphorylation of SOCS3 protein. We also observed constitutive tyrosine phosphorylation of SOCS3 in peripheral blood mononuclear cells (PBMCs) derived from patients homozygous for the JAK2 V617F mutant. These findings suggest that the JAK2 V617F has overcome normal SOCS regulation by hyperphosphorylating SOCS3, rendering it unable to inhibit the mutant kinase. Thus, JAK2 V617F may even exploit SOCS3 to potentiate its myeloproliferative capacity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The temporal dynamics of oocyte growth, plasma sex steroids and somatic energy stores were examined during a 12 month ovarian maturation cycle in captive Murray cod Maccullochella peelii peelii under simulated natural photothermal conditions. Ovarian function was found to be relatively uninhibited in captivity, with the exception that post-vitellogenic follicles failed to undergo final maturation, resulting in widespread pre-ovulatory atresia. Seasonal patterns of oocyte growth were characterised by cortical alveoli accumulation in March, deposition of lipids in April, and vitellogenesis between May and September. Two distinct batches of vitellogenic oocytes were found in Murray cod ovaries, indicating a capacity for multiple spawns. Plasma profiles of 17β-oestradiol and testosterone were both highly variable during the maturation period suggesting that multiple roles exist for these steroids during different stages of oocyte growth. Condition factor, liver size and visceral fat stores were all found to increase prior to, or during the peak phase of vitellogenic growth. Murray cod appear to strategically utilise episodes of high feeding activity to accrue energy reserves early in the reproductive cycle prior to its deployment during periods of rapid ovarian growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleotide variation in a portion of the mitochondrial cytochrome c oxidase subunit1 (cox1) gene from asexual stages of bucephalids of southern Australian scallops (Chlamys asperrima, Chlamys bifrons and Pecten fumatus) was investigated using a mutation scanning–sequencing approach. Single-strand conformation polymorphism (SSCP) analysis revealed three main profile types (A, B and C) for parasites isolated from scallops. Sequence analysis revealed that samples represented by profiles B and C had a high degree (97.3%) of sequence similarity, whereas they were ~21% different in sequence from those represented by profile A. These findings suggested that at least two types or species (represented by profile A, or profile B or C) of bucephalid infect scallops, of which both were detected in South Australia, while only one was found in Victoria. The prevalence of bucephalids (and their SSCP haplotypes) appeared to differ among the three species of scallop in South Australia as well as between the two scallop species in Victoria, indicating a degree of host specificity. Adult bucephalids were collected from Eastern Australian Salmon (Arripis trutta), in an attempt to match them with the asexual stages from the scallop hosts. Neither of the two taxa of adult bucephalid (Telorhynchus arripidis and an un-named Telorhynchus species) shared SSCP profiles with the bucephalids from scallops, but were genetically similar, suggesting that the asexual stages from scallops may represent the genus Telorhynchus. This study, which assessed nucleotide sequence variation in a portion of the mitochondrial cox1 gene for bucephalids found in scallops and arripid fish, illustrates the usefulness of the mutation scanning approach to elucidate complex life-cycles of marine parasites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reproduced with the specific permission of the copyright owner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Menkes disease is a copper deficiency caused by mutations in the Menkes gene, which encodes a copper-transporting protein. This study identified the causative mutations in several Menkes patients, which provided a diagnostic test for relatives and identified critical regions of the Menkes protein. Further regions were identified through functional analysis of mutations introduced by in vitro mutagenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Robustness is an inherent property of biological system. It is still a limited understanding of how it is accomplished at the cellular or molecular level. To this end, this article analyzes the impact degree of each reaction to others, which is defined as the number of cascading failures of following and/or forward reactions when an initial reaction is deleted. By analyzing more than 800 organism’s metabolic networks, it suggests that the reactions with larger impact degrees are likely essential and the universal reactions should also be essential. Alternative metabolic pathways compensate null mutations, which represents that average impact degrees for all organisms are small. Interestingly, average impact degrees of archaea organisms are smaller than other two categories of organisms, eukayote and bacteria, indicating that archaea organisms have strong robustness to resist the various perturbations during the evolution process. The results show that scale-free feature and reaction reversibility contribute to the robustness in metabolic networks. The optimal growth temperature of organism also relates the robust structure of metabolic network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We generated a mouse line with a missense mutation (S248F) in the gene (CHRNA4) encoding the α4 subunit of neuronal nicotinic acetylcholine receptor (nAChR). Mutant mice demonstrate brief nicotine induced dystonia that resembles the clinical events seen in patients with the same mutation. Drug-induced dystonia is more pronounced in female mice, thus our aim was to determine if the S248F mutation changed the properties of fast- and slow-twitch muscle fibres from female mutant mice. Reverse transcriptase-PCR confirmed CHRNA4 gene expression in the brain but not skeletal muscles in normal and mutant mice. Ca2+ and Sr2+ force activation curves were obtained using skinned muscle fibres prepared from slow-twitch (soleus) and fast-twitch (EDL) muscles. Two significant results were found: (1) the (pCa50 - pSr50) value from EDL fibres was smaller in mutant mice than in wild type (1.01 vs. 1.30), (2) the percentage force produced at pSr 5.5 was larger in mutants than in wild type (5.76 vs. 0.24%). Both results indicate a shift to slow-twitch characteristics in the mutant. This conclusion is supported by the identification of the myosin heavy chain (MHC) isoforms. Mutant EDL fibres expressed MHC I (usually only found in slow-twitch fibres) as well as MHC IIa. Despite the lack of spontaneous dystonic events, our findings suggest that mutant mice may be having subclinical events or the mutation results in a chronic alteration to muscle neural input.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

APGW-amide is a well-known neurohormone modulator in several molluscs, and is involved in motor activities, feeding, and sexual behavior. In this report we show that injections of APGW-amide into 4-mo-old juvenile Haliotis asinina stimulate growth of body weight and, to a lesser degree, shell length. The injections were given at 0 (control), 20, and 200 ng/g body weight (BW), at 1-wk intervals for 14 wk. BW and shell length (SL) were measured every week, and growth rates were calculated. When compared with control animals, there was an approximate 2-fold increase in body growth rates of animals given 20 ng/g BW and 200 ng/g BW APGW-amide (P ≤ 0.05), whereas only 20 ng/g BW APGW-amide produced significantly greater SL than controls (P ≤ 0.05), with an approximate 1.2-fold increase. Using an immunoperoxidase technique, we showed the presence of APGW-amide in neuronal cells of the cerebral ganglia and nerve fibers. Overall, these data indicate that APGW-amide is an important neurohormone/neuromodulator in the nervous system of H. asinina and plays a role in controlling the body growth of H. asinina.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Databases of mutations causing Mendelian disease play a crucial role in research, diagnostic and genetic health care and can play a role in life and death decisions. These databases are thus heavily used, but only gene or locus specific databases have been previously reviewed for completeness, accuracy, currency and utility. We have performed a review of the various general mutation databases that derive their data from the published literature and locus specific databases. Only two—the Human Gene Mutation Database (HGMD) and Online Mendelian Inheritance in Man (OMIM)—had useful numbers of mutations. Comparison of a number of characteristics of these databases indicated substantial inconsistencies between the two databases that included absent genes and missing mutations. This situation strengthens the case for gene specific curation of mutations and the need for an overall plan for collection, curation, storage and release of mutation data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spondylocostal dysostoses (SCDs) are a heterogeneous group of vertebral malsegmentation disorders that arise during embryonic development by a disruption of somitogenesis. Previously, we had identified two genes that cause a subset of autosomal recessive forms of this disease: DLL3 (SCD1) and MESP2 (SCD2). These genes are important components of the Notch signaling pathway, which has multiple roles in development and disease. Here, we have used a candidate-gene approach to identify a mutation in a third Notch pathway gene, LUNATIC FRINGE (LFNG), in a family with autosomal recessive SCD. LFNG encodes a glycosyltransferase that modifies the Notch family of cell-surface receptors, a key step in the regulation of this signaling pathway. A missense mutation was identified in a highly conserved phenylalanine close to the active site of the enzyme. Functional analysis revealed that the mutant LFNG was not localized to the correct compartment of the cell, was unable to modulate Notch signaling in a cell-based assay, and was enzymatically inactive. This represents the first known mutation in the human LFNG gene and reinforces the hypothesis that proper regulation of the Notch signaling pathway is an absolute requirement for the correct patterning of the axial skeleton.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enhanced antibiotic resistance of Pseudomonas aeruginosa in the cystic fibrosis (CF) lung is thought to be due to the formation of biofilms. However, there is no information on the antibiotic resistance of P. aeruginosa biofilms grown on human airway epithelial cells or on the effects of airway cells on biofilm formation by P. aeruginosa. Thus we developed a coculture model and report that airway cells increase the resistance of P. aeruginosa to tobramycin (Tb) by >25-fold compared with P. aeruginosa grown on abiotic surfaces. Therefore, the concentration of Tb required to kill P. aeruginosa biofilms on airway cells is 10-fold higher than the concentration achievable in the lungs of CF patients. In addition, CF airway cells expressing ΔF508-CFTR significantly enhanced P. aeruginosa biofilm formation, and ΔF508 rescue with wild-type CFTR reduced biofilm formation. Iron (Fe) content of the airway in CF is elevated, and Fe is known to enhance P. aeruginosa growth. Thus we investigated whether enhanced biofilm formation on ΔF508-CFTR cells was due to increased Fe release by airway cells. We found that airway cells expressing ΔF508-CFTR released more Fe than cells rescued with WT-CFTR. Moreover, Fe chelation reduced biofilm formation on airway cells, whereas Fe supplementation enhanced biofilm formation on airway cells expressing WT-CFTR. These data demonstrate that human airway epithelial cells promote the formation of P. aeruginosa biofilms with a dramatically increased antibiotic resistance. The ΔF508-CFTR mutation enhances biofilm formation, in part, by increasing Fe release into the apical medium.