20 resultados para Solid Carbon

em Deakin Research Online - Australia


Relevância:

40.00% 40.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon dioxide reforming happens all the time in nature by photosynthesis of plants. It thus provides a great challenge to equal or surpass this photosynthesis in an artificial system. This paper presents a literature review of using semi-conductor to assist photocatalytic reduction of carbon dioxide under UV irradiation. It analyses some key factors influencing the reaction rates which have been studied worldwide in respective areas. Special interest is taken in recommending possible improvements for the heterogeneous photocatalysis involving gas-solid interfaces, particularly in relation to the influencing factors affecting product concentrations and the reduction rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It has been shown that CO2 could be transformed into hydrocarbons when it is in contact with water vapour and catalysts under UV irradiation. This paper presents an experimental set-up to study the process employing a new approach of heterogeneous photocatalysis using pellet form of catalyst instead of immobilized catalysts on solid substrates. In the experiment, CO2 mixed with water vapour in saturation state was discharged into a quartz reactor containing porous TiO2 pellets and illuminated by various UV lamps of different wavelengths for 48 h continuously. The gaseous products extracted were identified using gas chromatography. The results confirmed that CO2 could be reformed in the presence of water vapour and TiO2 pellets into CH4 under continuous UV irradiation at room conditions. It showed that when UVC (253.7 nm) light was used, total yield of methane was approximately 200 ppm which was a fairly good reduction yield as compared to those obtained from the processes using immobilized catalysts through thin-film technique and anchoring method. CO and H2 were also detected. Switching from UVC to UVA (365 nm) resulted in significant decrease in the product yields. The pellet form of catalyst has been found to be attractive for use in further research on photocatalytic reduction of CO2.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Substitution reactions between carbon nanotube (CNT) template and SiO with the formation of carbon rich silicon oxide nanowires (SiO–C-NWs) have been investigated using transmission electron microscopy and x-ray energy dispersive spectroscopy. The reaction was carried out by thermal annealing at 1200 °C for 1 h of a mixture of silicon monoxide (SiO) and iron (II) phthalocyanine, FeC32N8H16 (FePc) powders. Multiwalled CNTs were produced first via pyrolysis of FePc at a lower temperature (1000 °C). SiO vapors reacted with the CNTs at higher temperatures to produce amorphous SiO–C-NWs with a uniform diameter and a length in tens of micrometers. The special bamboolike structure of the CNTs allows the reaction to start from the external surface of the tubes and transform each CNT into a solid nanowire section by section.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Separate nucleation and growth processes of carbon nanotubes were found in a mechano-thermal method in which carbon nanotubes are produced by first mechanical milling of graphite powder at room temperature and subsequent thermal annealing up to 1400 °C. The ball-milled graphite contains nucleation structures (nanosized metal particles and deformed (0 0 2) layers containing pentagons), and disordered carbon as a free carbon atom source. The subsequent annealing activates the growth of two types of multi-walled nanotubes in the absence of carbon vapor. Thin nanotubes (diameter <20 nm) are formed via crystallization of the disordered carbon with the preferred formation of the (0 0 2) basal planes. Thick nanotubes (diameter >20 nm) are formed through a metal catalytic solution–precipitation process (solid–liquid–solid). In both cases, carbon nanotubes grew out from disordered carbon particles with closed tips.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurements have been made of the solvation forces between mica surfaces in the even-numbered n-alkanes from hexane to hexadecane. In all cases the force law is qualitatively very similar, characterized by a decaying oscillatory function of distance, as occurs for simple isotropic liquids. The spacing between successive minima in the force does not increase with carbon number, and is comparable to the width of a linear alkane molecule rather than its length or any average diameter. This suggests that the alkanes have some tendency towards a parallel orientation near the mica surfaces. The measurements give no indication of any strong repulsive component expected from mean-field theories of higher alkanes or polymers. The results of one such theory are presented, and the reasons for its failure to match the experimental data are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A facile, two-step method for chemically attaching single-stranded DNA to graphitic surfaces, represented here by carbon nanotubes, is reported. In the first step, an azide-containing compound, N-5-azido-nitrobenzoyloxy succinimide (ANB-NOS), is used to form photo-adducts on the graphitic surfaces in a solid-state photochemical reaction, resulting in active ester groups being oriented for the subsequent reactions. In the second step, pre-synthesized DNA strands bearing a terminal amine group are coupled in an aqueous solution with the active esters on the photo-adducts. The versatility of the method is demonstrated by attaching pre-synthesized DNA to surfaces of carbon nanotubes in two platforms—as vertically-aligned multi-walled carbon nanotubes on a solid support and as tangled single-walled carbon nanotubes in mats. The reaction products at various stages were characterized by x-ray photoelectron spectroscopy. Two different assays were used to check that the DNA strands attached to the carbon nanotubes were able to bind their partner strands with complementary base sequences. The first assay, using partner DNA strands tethered to gold nanoparticles, enabled the sites of DNA attachment to the carbon nanotubes to be identified in TEM images. The second assay, using radioactively labelled partner DNA strands, quantified the density of functional DNA strands attached to the carbon nanotubes. The diversity of potential applications for these DNA-modified carbon-nanotube platforms is exemplified here by the successful use of a DNA-modified single-walled carbon-nanotube mat as an electrode for the specific detection of metal ions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Solidification microstructure is a defining link between production techniques and the mechanical properties of metals and in particular steel. Due to the difficulty of conducting solidification studies at high temperature, knowledge of the development of solidification microstructure in steel is scarce. In this study, a laser-scanning confocal microscopy (LSCM) has been used to observe in situ and in real-time the planar to cellular to dendritic transition of the progressing solid/liquid interface in low carbon steel. Because the in situ observations in the laser-scanning confocal microscopy are restricted to the surface, the effect of sample thickness on surface observations was determined. Moreover, the effect of cooling rate and alloy composition on the planar to cellular interface transition was investigated. In the low-alloyed, low-carbon steel studied, the cooling rate does not seem to have an effect on the spacing of the cellular microstructure. However, in the presence of copper and manganese, the cell spacing decreased at higher cooling rates. Higher concentrations of copper in steel resulted on an increased cell spacing at the same cooling rates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on the use of ionic liquid co-solvents in the preparation of polyacrylonitrile–natural polymer carbon fibers as low cost environmentally friendly alternatives to conventional carbon fibers precursors and processing solvents. We have characterized the structure properties of the new composites as a function of dissolving solvent using solid state NMR, DSC, FTIR and TGA. We show that the dissolving solvent plays a significant role in the properties of the new composites, we also find that the incorporation of the natural polymer additive impacts the thermal transition temperatures for the PAN

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly(triazine imide) with intercalation of lithium and chloride ions (PTI/Li+Cl−) was synthesized by temperature-induced condensation of dicyandiamide in a eutectic mixture of lithium chloride and potassium chloride as solvent. By using this ionothermal approach the well-known problem of insufficient crystallinity of carbon nitride (CN) condensation products could be overcome. The structural characterization of PTI/Li+Cl− resulted from a complementary approach using spectroscopic methods as well as different diffraction techniques. Due to the high crystallinity of PTI/Li+Cl− a structure solution from both powder X-ray and electron diffraction patterns using direct methods was possible; this yielded a triazine-based structure model, in contrast to the proposed fully condensed heptazine-based structure that has been reported recently. Further information from solid-state NMR and FTIR spectroscopy as well as high-resolution TEM investigations was used for Rietveld refinement with a goodness-of-fit (χ2) of 5.035 and wRp=0.05937. PTI/Li+Cl− (P63cm (no. 185); a=846.82(10), c=675.02(9) pm) is a 2D network composed of essentially planar layers made up from imide-bridged triazine units. Voids in these layers are stacked upon each other forming channels running parallel to [001], filled with Li+ and Cl− ions. The presence of salt ions in the nanocrystallites as well as the existence of sp2-hybridized carbon and nitrogen atoms typical of graphitic structures was confirmed by electron energy-loss spectroscopy (EELS) measurements. Solid-state NMR spectroscopy investigations using 15N-labeled PTI/Li+Cl− proved the absence of heptazine building blocks and NH2 groups and corroborated the highly condensed, triazine-based structure model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrode materials are being developed to realise sodium-ion batteries that can provide energy storage solutions. Here, we develop amorphous carbon coated Na7Fe7(PO4)6F3, prepared by combining hydrothermal and solid state reaction methods, as an insertion electrode for sodium-ion batteries applications. Na7Fe7(PO4)6F3 particles are surrounded by a thin layer (∼1.5–2 nm) of amorphous carbon. The Na7Fe7(PO4)6F3/C composite cathode undergoes reversible sodium intercalation/de-intercalation with an average operational potential of ∼3.0 V (vs Na+/Na). This cathode has a capacity of 65 mA h g−1 at 100 mA g−1 current after 60 cycles and features twice higher capacity than that of an uncoated Na7Fe7(PO4)6F3 sample. Therefore, the carbon-coated Na7Fe7(PO4)6F3 composite presents feasible sodium intercalation/de-intercalation capacity, offering possibilities for developing a low cost, high performance sodium-ion battery positive electrode.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Linear (fiber or yarn) supercapacitors have demonstrated remarkable cyclic electrochemical performance as power source for wearable electronic textiles. The challenges are, first, to scale up the linear supercapacitors to a length that is suitable for textile manufacturing while their electrochemical performance is maintained or preferably further improved and, second, to develop practical, continuous production technology for these linear supercapacitors. Here, we present a core/sheath structured carbon nanotube yarn architecture and a method for one-step continuous spinning of the core/sheath yarn that can be made into long linear supercapacitors. In the core/sheath structured yarn, the carbon nanotubes form a thin surface layer around a highly conductive metal filament core, which serves as current collector so that charges produced on the active materials along the length of the supercapacitor are transported efficiently, resulting in significant improvement in electrochemical performance and scale up of the supercapacitor length. The long, strong, and flexible threadlike supercapacitor is suitable for production of large-size fabrics for wearable electronic applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although great attention has been paid to wearable electronic devices in recent years, flexible lightweight batteries or supercapacitors with high performance are still not readily available due to the limitations of the flexible electrode inventory. In this work, highly flexible, bendable and conductive rGO-PEDOT/PSS films were prepared using a simple bar-coating method. The assembled device using rGO-PEDOT/PSS electrode could be bent and rolled up without any decrease in electrochemical performance. A relatively high areal capacitance of 448 mF cm(-2) was achieved at a scan rate of 10 mV s(-1) using the composite electrode with a high mass loading (8.49 mg cm(-2)), indicating the potential to be used in practical applications. To demonstrate this applicability, a roll-up supercapacitor device was constructed, which illustrated the operation of a green LED light for 20 seconds when fully charged.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Until now, it has been a challenge both in experiment and in theory to design new superhard materials with high hardness values that are comparable to that of diamond. Here, by using first-principles calculations, we have introduced two new phases for a carbon-rich C-N compound with stoichiometry C3N, which is predicted to be energetically stable or metastable with respect to graphite and solid N2 at ambient pressure. It is found that C3N has a layered structure containing graphitic layers sandwiched with freely rotated N2 molecules. The layer-structured C3N is calculated to transform into a three-dimensional C2221 structure at 9 GPa with sp3-hybridized C atoms and sp2-hybridized N atoms. Phonon dispersion and elastic constant calculations reveal the dynamical and mechanical stability of the C2221 phase of C3N at ambient pressure. Significantly, first-principles ideal strength calculations indicate that the C2221 phase of C3N is a superhard material with an estimated Vickers hardness (∼76 GPa) comparable to that of diamond (60-120 GPa). The present results shed strong light on designing new superhard materials in the C-N system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Significant research advances have been made in the field of carbon nanotube (CNT) reinforced ordinary Portland cement (OPC) paste composites in recent years. However, the distribution of CNTs in fresh OPC paste is yet to be fully researched and quantified, thereby creating a technical barrier to CNT utilization in concrete construction. In this study, fresh OPC paste was treated as a two-phase material containing solid particles (cement grains) and liquid solutions (pore solutions). A centrifugation-based technique was proposed to separate these two phases and the presence of CNTs in each phase was quantified. UV-Vis spectrometry showed that the degree of dispersion can achieve above 90 wt% using polycarboxylate superplasticizer. The results suggested an upper limit of 0.26 wt% for CNT addition into water before mixing with OPC, and the dispersion was found to be stable for at least 4 hours. Based on scanning electron imaging, the adsorption phenomenon of CNTs on OPC grains with size less than 4 μm was discovered. Energy-dispersive X-ray spectroscopy indicated these adsorptive particles have lower Ca to Si ratio. It was observed that about 0.5 mg of CNTs per gram of OPC grains was adsorbed in solid OPC grains in typical fresh OPC pastes. On the basis of these results, a conceptual model was proposed for the distribution of CNTs in fresh OPC paste where about 33 wt% of the CNTs stay in pore solution and 65 wt% of CNTs are adsorbed on OPC grains.