12 resultados para Solar collector

em Deakin Research Online - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new solar absorber structure has been proposed and studied in this paper. The metal tubes running perpendicular to a set of parallel rectangular metal fins make the solar absorber with rectangular slots. Studies on the collector were theoretically carried out in the aspects of heat transfer, thermodynamics and . hydrodynamics. The calculating methods for calculating fin efficiency F and efficiency factors of the collector F' were obtained. The results showed that the new solar collector would have the higher efficiency and better performance at higher fluid temperature than that of the traditional flat-plate collectors. A collector prototype with the new structure was built and tested. The testing results agree with our theoretical results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of onsite renewable energy cogeneration from structural building elements is a relatively new concept, and one that is gaining considerable interest in the building industry. In this study the design, development, testing and production methods for a novel building integrated photovoltaic/thermal (BIPVT) solar energy cogeneration system are examined and discussed.

During the analysis of the design, adhesives (ADH), resistance seam welding (RSW) and autoclaving (ATC) were identified as the most appropriate for fabricating BIPVT panels for roofing and façade applications. Of these manufacturing methods ADH was found to be most suitable for low volume production systems due to its low capital cost.

Furthermore, a prototype panel was fabricated using ADH methods and exhibited good thermal performance. In addition it was shown, using experimental testing, that the performance of a BIPVT could be theoretically predicted using a one-dimensional heat transfer model. Furthermore, the model was used to suggest further improvements that could be made to the design. Finally, a transient simulation of the BIPVT was performed in TRNSYS and was used to illustrate the long term benefits of the system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The idea of combining photovoltaic and solar thermal collectors (PVT collectors) to provide electrical and heat energy is not new, however it is an area that has received only limited attention. With concern growing over energy sources and their usage, PVTs have become an area receiving more attention. Although PVTs are not as prevalent as solar thermal systems, the integration of photovoltaic and solar thermal collectors into the walls or roofing structure of a building could provide greater opportunity for the use of renewable solar energy technologies in domestic, commercial and industrial applications. As such, the design of a novel building integrated photovoltaic/thermal (BIPVT) solar collector is theoretically analysed through the use of a modified Hottel-Whillier model. The thermal and electrical efficiency under a range of conditions are subsequently determined and results showing how key design parameters influence the performance of the BIPVT system are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New Zealand is a large producer and processor of primary products and has a climate with high levels of solar radiation. However, the use of solar energy for heating and cooling in the processing industries has received limited attention.
For this study, the design of a low cost solar collector is analysed and discussed. Furthermore, the methods for integrating the collector into water heating and cooling systems in a hypothetical processing environment are examined. An F-Chart analysis is used to simulate the performance of large-area arrays of the solar collector and to determine its potential contribution to heating and cooling loads.
The study shows that for a storage-based system, the contribution of solar energy is determined mainly by the collector area to storage volume ratio. It is suggested that this low cost collector could make a significant contribution to energy use in processing plants and may be an attractive future technology.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The literature over the past 25 years indicates that there has been a continued interest in using passive and active solar technologies to reduce the conventional energy required to maintain water temperatures in small recirculation aquaculture systems. Although all of the experimental systems reviewed report favourable results, there is little information available to guide system designers. This paper describes the use of a simulation model to predict the annual conventional energy consumption of a 10.6 m3 RAS enclosed in a double layer polyethylene greenhouse in two different climates. The water was maintained at 22.5 °C and the recirculation rate was 10% of tank volume per day. Simple unglazed solar collectors have also been combined with the greenhouse to further reduce energy consumption. The effect of increasing collector area on the solar fraction and utilization of useful energy was predicted. Finally, the model was used to investigate the relationship between the occurrence of condensation on the inner cover, ventilation rates and energy use. It was found that in a hot dry climate, the greenhouse alone was sufficient to reduce the conventional energy requirements by 87%; while in the cooler temperate climate reductions of 66% were possible. When solar collectors were added to the system, conventional energy requirements were reduced further and depended on the area of collector used. For example, in the temperate climate location, conventional energy requirements were reduced to 23% of a RAS enclosed in a non-solar building when 26 m2 of solar collector inclined at the optimum angle for winter energy collection were used. Although condensation could be successfully reduced by ventilation of the greenhouse, this increased conventional energy requirements because the potential for evaporation was increased. Covering the tanks at night was found to be a more effective strategy because it reduced condensation and conventional energy use simultaneously.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The use of solar collectors with coloured absorbers for water heating is an area of particular interest when considering their integration with buildings. By matching the absorber colour with that of the roof or façade of the building, it is possible to achieve an architecturally and visually pleasing result. Despite the potential for the use of coloured absorbers, very little work has been undertaken in the field.

In this study, the thermal performance of a series of coloured (ranging from white to black), building integrated solar collectors for water heating was examined both theoretically and experimentally. Subsequently, the annual solar fraction for typical water heating systems with coloured absorbers was calculated. The results showed that coloured solar collector absorbers can make noticeable contributions to heating loads. Furthermore, although their thermal efficiency is lower than highly developed selective coating absorbers, they offer the advantage of improved aesthetic integration with buildings.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

New Zealand is one of the world’s largest producers of dairy products and has a climate with high levels of solar radiation; however, the use of solar energy in the dairy processing industry has received limited attention. An examination of historical records found that the annual peak in New Zealand milk production and processing occurs at a time when solar radiation levels are increasing markedly. An F-Chart analysis was used to simulate the performance of large-area arrays of solar collectors and to determine their suitability for heating and cooling in a dairy processing environment. For the study four types of solar collectors were analysed: glazed flat plates, evacuated tubes, evacuated tubes with CPC reflectors and a building-integrated solar collector under development at the University of Waikato (UoW). It was found that of these echnologies, both flat plate and evacuated tubes with CPC reflectors could make useful heating and cooling contributions. Furthermore, the solar fraction was determined mainly by the collector area to storage volume ratio. Finally, it was found that the UoW building-integrated solar collector could make a significant contribution to energy use in dairies and may be an attractive future technology for the industry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrical efficiency of photovoltaic devices can be directly related to the temperature of the photovoltaic cells.Tn this study a BIPVT solar collector was analysed and key parameters affecting its electrical efficiency were identified.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In recent times there has been growing interest in the integration of solar collectors, for water heating, into the façade of buildings. However, the design methodology of these devices remains largely the same as typical “stand-alone” collectors. As such it is still common for materials with a high thermal resistance to be used for insulating the rear surface of these collectors.

Unlike a “stand-alone” solar collector that is exposed to the atmosphere at all faces; a building integrated system allows the opportunity for air to act as an insulator at the rear surface of the solar collector. The use of convection suppression devices has been widely discussed in the literature as a means of reducing natural convection heat loss from the front surface of glazed solar collectors. However in this study the use of baffles in an attic was examined as a means of suppressing heat loss by natural convection from the rear surface of a roof-integrated solar collector. The aim of the study was to examine whether the use of baffles would allow the cost of building integrated collectors to be reduced by removing the cost of insulating material.

To determine the effect of baffles in the attic space at the rear surface of the collector, a 3-dimensional triangular cross sectioned enclosure with a vertical aspect ratio of 0.5 and a horizontal aspect ratio of 3.3 was modelled. The flow patterns and heat transfer in the enclosure were determined for Grashof Numbers in the range of 106 to 107 using a commercially available finite volume CFD solver.
It was found that the use of a single adiabatic baffle mounted vertically downwards from the apex, and extending the length of the enclosure, would alter the flow such that the heat transfer due to natural convection was reduced with respect to the length of the baffle.

Furthermore, it was observed that a series of convection cells, not previously reported in the literature, appeared to exist along the length of the enclosure. As such, it may be possible to derive additional benefit in reducing the heat transfer by adding lateral baffles in addition to the single longitudinal baffle modelled in this study.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Night sky cooling is explored as an alternative to the conventional cooling technologies using fossil fuels. The night sky cooling method is based on the long wave radiation of unglazed collectors to the sky at night. An evaluation of the night sky cooling system is present for a residential building in three cities of Australia, namely Alice Springs, Darwin and Melbourne. The system comprises an unglazed flat plate solar collector integrated with borehole storage. It uses night sky radiation to reduce the temperature of the ground near to the boreholes. The system was simulated with TRNSYS, a transient simulation program. The simulation results for adequately sized systems show that night sky radiation is able to reduce the coolth storage borehole temperature and the proposed system is able to meet the cooling load of the residential building simulated in three locations. Borehole lengths of 270, 318 and 106 m are required for coolth storage with 90, 260 and 14 m2 collector area for heat rejection in Alice Springs, Darwin and Melbourne, respectively. At the 20th simulation year, the proposed system is able to achieve a system cooling coefficient of performance of 2.2 in Alice Springs, and 2.8 in Darwin and Melbourne.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper firstly expounds that the reheat-regenerative Rankine power cycle is a suitable cycle for the parabolic trough collector, a popular kind of collector in the power industry. In a thermal power cycle, the higher the temperature at which heat is supplied, the higher the efficiency of the cycle. On the other hand, for a given kind of collector at the same exiting temperature, the higher the temperature of the fluid entering the collector, the lower the efficiency of the collector. With the same exiting temperature of the solar field and the same temperature differences at the hottest end of the superheater/reheater and at the pinch points in the heat exchangers (e.g., the boiler) in the cycle, the efficiencies of the system are subject to the temperature of the fluid entering the collector or the saturation temperature at the boiler. This paper also investigates the optimal thermal and exergetic efficiencies for the combined system of the power cycle and collector. To make most advantage of the collector, the exiting fluid is supposed to be at the maximum temperature the collector can harvest. Hence, the thermal and exergetic efficiencies of the system are related to the saturation temperature at the boiler here.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integration of solar energy systems into buildings has been the subject of considerable commercial and academic research, particularly building integrated photovoltaics. However, the integration of solar hot water systems into roofing systems has had far less attention. This paper presents the theoretical and experimental results of a novel building integrated solar hot water system developed using existing long run roofing materials.

This work shows that it is possible to achieve effective integration that maintains the aesthetics of the building and also provides useful thermal energy. The results of an unglazed 108m2 swimming pool heater and 8m2 glazed domestic hot water systems are presented.

The experimental results show that the glazed system performs close to the theoretical model and is an effective provider of hot water in certain climates. However it was also found that for larger scale building integrated solar water heating systems, special attention must be paid to the configuration and arrangement of the collectors in order to minimise problems with respect to flow distribution and its effect on collector and system efficiency.